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ABSTRACT 
 
 
 
Since the end of the Cold War, the Army has been engaged in an unprecedented 

number of joint contingency operations that run the gamut from humanitarian efforts in 

Cuba and Haiti to peace-enforcing and peace-keeping in Bosnia to full scale war in 

Southwest Asia.  These operations, the result of an increasingly complex international 

security environment, hint at future missions involving American forces aimed at 

protecting U.S. interests worldwide. 

To engage and defeat future threats to our national security, the Army must 

transform itself into a more strategically responsive, lethal force.  The Army is faced with 

the challenge of lightening the force while simultaneously increasing its survivability and 

lethality.  Reach-back technologies from sea, air, and space can provide Army units with 

added lethality without encumbering them further. 

This thesis analyzes the ability of the Army to effectively utilize Naval Surface 

Fire Support (NSFS) to provide indirect fire in support of brigade-sized units.  The Fire 

Support Simulation Tool (FSST) takes the capabilities and limitations of weapon systems 

being studied and simulates their employment in the context of a well-defined scenario 

for analysis.  The output from the simulation provides the input for the analysis of NSFS. 

By comparing the utility of several well-constructed courses of action, the FSST 

can help decision-makers determine the effectiveness of NSFS within the context of the 

scenario being considered.  The results of this analysis determined that although a myriad 

of issues such as training, mistrust, and synchronization must be addressed to make 

reach-back fires successful, there is strong quantitative and analytical evidence to support 
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the effectiveness of NSFS to an Army Brigade commander engaged in a littoral 

campaign. 
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DISCLAIMER 
The views in this thesis are those of the author and do not reflect the official 

policy or position of the Department of Defense or the U.S. Government.  The reader is 

cautioned that computer programs developed in this research may not have been 

exercised for all cases of interest.  While every effort has been made, within the time 

available, to ensure that the programs are free of computational and logic errors, they 

cannot be considered validated.  Any application of these programs without additional 

verification is at the risk of the user. 
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EXECUTIVE SUMMARY 

Since the end of the Cold War, the Army has been engaged in an unprecedented 

number of joint contingency operations that run the gamut from humanitarian efforts in 

Cuba and Haiti to peace-enforcing and peace-keeping in Bosnia to full scale war in 

Southwest Asia.  Over the last ten years, there has been a steady increase in rapid-

deployment, multi-dimensional, joint contingency missions to combat these threats.  As 

we move into the 21st century these missions will certainly become more and more 

complex and more commonplace.  To meet the increased requirements to engage and 

defeat new threats to our national security, the Army must transform itself into a more 

strategically responsive, lethal force that is dominant across a broad spectrum of military 

operations such as peace-keeping, combating criminal and terrorist activities, and full 

scale war.  The Army must fully develop its capabilities as an integrated, joint force able 

to synchronize the lethal and non- lethal fires of all services at the brigade level.  Reach-

back technologies from sea, air, and space can provide Army units with added lethality 

without encumbering them further.  This thesis analyzes the effectiveness of Naval 

Surface Fire Support (NSFS) for use in supporting land-based Army forces in the littoral.  

Rather than simply analyzing the different characteristics and specifications of available 

indirect fire weapon systems to determine their effectiveness, a model was created.  This 

model, the Fire Support Simulation Tool (FSST), takes the capabilities and limitations of 

the weapon systems being studied and simulates their employment in the context of a 

well-defined scenario.  This thesis analyzes the data produced by the FSST to draw some 

broad conclusions about the future of indirect fire support for Army operations. 



 xxii

The objective of this thesis is to determine the effectiveness of NSFS to the Army 

at brigade level and below in a littoral campaign.  The objective was further defined in 

terms of seven measures of effectiveness or MOE’s – average fire mission time, 

percentage of missions fired, percentage of fired missions that were successful, 

percentage of total missions that were successful, percentage of the area of operations 

that were covered by indirect fires, number of rounds that caused collateral damage, and 

the average number of firing platforms available to fire other missions or mass fires. 

Several courses of action (COA’s) were created, each modeling a different task 

organization of indirect fires to support an Army maneuver brigade.  The first COA 

includes three Army artillery batteries, the second has three naval surface support ships, 

the third has six Army artillery batteries, and the fourth has three Army artillery batteries 

and three ships.  Each of these COA’s was compared in two separate scenarios.  The first 

scenario models fires in support of the Army Interim Brigade Combat Team (IBCT) 

during the year 2005, and the second models fires in support of the Army Future Combat 

Systems (FCS) during the year 2015. 

The simulation accounted for the environment and the specific characteristics of 

the weapon systems in each COA to create data for each simulation run.  By weighting 

the importance of each MOE, multi-attribute utility theory was used to combine the data 

for a COA into a single measure of its effectiveness.  Since each simulation run was 

governed by a large number of random events, replicating a specific COA and scenario 

gave a range of values for each of the MOE’s.  This in turn yielded a range of values for 

the effectiveness of each COA.  The final distribution of scores of the COA’s was then 

compared to determine which one was the best for each scenario. 



 xxiii 

The results of the simulation show that by combining the strengths of Army 

artillery and naval gunfire, an Army Brigade commander can organize a fire support team 

that is better able to support his missions than a pure strategy.  Although effectiveness is 

strongly dependent on the weighting scheme the commander adopts for the MOE’s, this 

thesis has demonstrated that there can be an added benefit to using NSFS that should be 

explored further. 

Although this thesis provides evidence supporting the use of NSFS in a support of 

Army operations in the littorals, there are a myriad of issues such as training, mistrust, 

and synchronization that must be addressed to make these types of joint campaigns 

successful.  In the final analysis, it was determine tha t there is strong quantitative and 

analytical evidence to support the effectiveness of NSFS to an Army Brigade commander 

engaged in a littoral campaign. 
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I.  INTRODUCTION 
Since the end of the Cold War, the Army has been engaged in an unprecedented 

number of joint contingency operations that run the gamut from humanitarian efforts in 

Cuba and Haiti to peace-enforcing and peace-keeping in Bosnia to full scale war in 

Southwest Asia. 

With the emergence of an increasingly complex international security 
environment, sources of conflict and tension are increasing.  Sources of 
unrest and conflict range from competition between states to the instability 
caused by the collapse of states unable to meet the strains of resource 
scarcity, population growth, and ethnic and religious militarism.  The 
technology enabling real-time transmission of information from any point 
on the globe has facilitated the rise of sub-national and transnational 
groups, including criminal and terrorist elements that may pursue 
objectives that threaten U.S. interests (Shinseki, Statement to 106th 
Congress, p. 3). 

Over the last ten years, there has been a steady increase in rapid-deployment, 

multi-dimensional, joint contingency missions to combat these threats.  As we move into 

the 21st century these missions will certainly become more and more complex and more 

commonplace.  To meet the requirement to engage and defeat these threats to our 

national security, the Army must transform itself into a more strategically responsive, 

lethal force.  This force must be dominant across a broad spectrum of military operations 

ranging from peace-keeping and humanitarian missions, to missions combating criminal 

and terrorist activities, to winning the nations wars on a military budget that continues to 

shrink and be scrutinized by public opinion.  General Shinseki’s vision for the Army is 

one of transformation from a Legacy Force designed to defeat Soviet forces in Europe to 

an Objective Force designed to preempt and if necessary defeat threats from all corners of 

the globe.  This transformation will ultimately result in a force designed to take 

advantage of technology to facilitate the ability to rapidly deploy forces and to 
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synchronize and integrate combat power through the design of compatible systems 

throughout the Army, Navy, Air Force, and the Marines. 

Based on General Shinseki’s vision, the Army must be capable of deploying one 

Brigade anywhere in the world within 96 hours, have an entire Division on the ground 

within 120 hours, and have five Divisions on the ground within 30 days.  This mission 

leaves the Army with the challenge of lightening the force while simultaneously 

increasing its survivability and lethality.  To do that, the Army must break free from the 

paradigm of a self-sufficient and self-contained force.  It must fully develop its 

capabilities as an integrated, joint force able to synchronize the lethal and non-lethal fires 

of all services at the brigade level. 

This thesis analyzes the effectiveness of Naval Surface Fire Support (NSFS) for 

use in supporting land-based Army forces in the littoral.  Rather than simply analyzing 

the different characteristics and specifications of available indirect fire weapon systems 

to determine their effectiveness, a model was created.  This model, the Fire Support 

Simulation Tool (FSST), takes the capabilities and limitations of the weapon systems 

being studied and simulates their employment in the context of a well-defined scenario.  

This thesis analyzes the data produced by the FSST to draw some broad conclusions 

about the future of indirect fire support for Army operations. 

A. BACKGROUND 

Mastering the employment of naval gunfire is a documented part of the training of 

all Army forward observers and Field Artillery officers.  Currently, however, the 

mechanism for synchronizing and integrating naval gunfire into Army operations is 

vaguely defined and is a process of trial and error that could take hours or days to 
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adequately refine.  Although the technology to effectively synchronize naval gunfire with 

Army operations in the littorals has existed for quite some time, there has never been a 

pressing need for the Army to rely on naval gunfire to support its operations.  In the past, 

once deployed and fighting on the ground, Army forces have been relatively self-

sufficient, with additional fires being considered a bonus rather than a necessity.  

However, in order to quickly deploy a brigade sized force that is both survivable and 

lethal in the most austere of environments characterized by a nonlinear battlefield, the 

Army must change not only the structure of its force, but also the mindset of its leaders.  

We must admit that we need the support of our sister services to accomplish not only our 

missions, but also the missions of our country.  As we move forward into the 21st century 

and the Army transforms from a Legacy to an Objective Force, the need for additional 

lethal and non- lethal fires that are quick and responsive is paramount.  We must design 

the capability to allow the near simultaneous engagement of the enemy anywhere he can 

be seen and engaged with precision fires from all applicable mediums of land, air, space, 

and sea.  Those fires must be quickly and easily integrated into a seamless joint operation 

that for example might include Army forces on the ground with EW  support from space, 

close air support from the Air Force, and air defense and NSFS in the littorals from the 

Navy. 

On 06 March 2000, the Navy took a huge leap in the right direction by tasking the 

Johns Hopkins Applied Physics Lab (JHAPL) with identifying and refining potential 

opportunities “…for NSFS asset employment in support of Army Future Combat System 

Objective Force operations and force employment” (JHU/APL Task Statement, p.1).  

Through the coupling of NSFS capabilities and limitations with Army requirements for 
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the Objective Force, JHAPL is analyzing the contributions the Navy can make to Army 

operations now and in the future as it designs, outfits, and fields future systems. 

B. THE ARMY OF THE FUTURE – BREAKING THE PARADIGM 

As we entered the Cold War in the years following World War II, the Army 

prepared for battle against the monolithic threat from the Soviet Union and her allies.  

That force was designed to fight and defeat a large armored enemy on a linear battlefield 

in Europe.  This basic force structure and design eventually lead to the Army we know 

today as the Legacy Force. 

The battles of the future will not be linear.  They will consist of multi-

dimensioned battlefields against enemies that could include criminals, terrorists, and 

dictators in obscure locations.  The enemy will practice guerrilla warfare, he will have 

weapons of mass destruction, and he will exercise information warfare with impunity.  

He will be a student of our history.  He will know that we lack commitment to long, 

drawn out conflicts, that we are averse to a high casualty rate, and that we are sensitive to 

international opinion and hence have a fear of collateral damage.  He will know our 

strengths and weaknesses and work diligently to exploit them and defeat us.  We must 

meet and defeat this new enemy threat by changing our tactics.   

The fact that battlefields of the future will be multi-dimensional and nonlinear, 

emphasizes the necessity to develop a capability to exploit knowledge of the situation to 

preempt enemy actions.  We must develop the capability to be a full spectrum force that 

is agile, flexible, and adaptive.  This force must balance precision strike with precision 

maneuver, as well as deploy quickly and sustain itself logistically for long periods of 

time.  We have to be able to integrate all combined, joint, and other available assets 
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quickly and easily into a synchronized plan.  We must develop the full dimension 

operational capability to rapidly and simultaneously hit the enemy from all angles and 

sustain that pressure until the enemy capitulates.  To do this, we must free ourselves from 

the paradigm of a cumbersome, hard to deploy, heavily-armored force designed to do 

battle on the steppes of Russia and the deserts of the Middle East.   

Our new force must exceed the lethality of our old force through overwhelming 

firepower gained by synchronizing and using assets from space, air, and sea that are not 

part of its internal structure.  And, our new force must exceed the survivability of our old 

force by its ability to move quickly and hide when necessary, by having a short logistics 

trail, by exercising tactical and operational mobility far in excess of what the enemy is 

capable of.  Future and developing technology will make this new force unmatched on 

the battlefield, Soldiers on Point for the Nation, Persuasive in Peace, Invincible in war. 

1. Interim Brigade Combat Team 

The Interim Brigade Combat Team (IBCT) is a force being developed using 

today’s technology to accomplish the objectives outlined in General Shinseki’s vision for 

the transformation of the Army.  By 2005 the Army will have the capability of putting 

one brigade in the air in 96 hours, one Division on the ground in 120 hours, and five 

Divisions on the ground in 30 days.  The IBCT will be capable of accomplishing the 

intent behind the transformation of the Army to the Objective Force using today’s 

technology.  By 2005 the Army projects that at least five Divisions will have IBCT 

brigades.  Not all Divisions in the Army will be outfitted using the IBCT platform, 

however; some will be transformed directly from their current configurations to the 

Objective Force.  The IBCT is basically an interim solution to deployability shortcomings 
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of the legacy force, and will serve as a test bed for the future technologies that will be 

used when the Objective Force is fielded. 

2. Future Combat System – Objective Force 

The FCS-OF is the force of the future and will be fielded by 2015.  The weapon 

systems, communications architecture, digital systems, vehicles, etc for that force are 

being designed based on technology projected to be available in 2015.  By designing all 

aspects of the Objective Force including the structure from the ground up, this force will 

be fully integrated internally as well as integrated with the other services and our allies to 

the maximum extent possible.  This integration and cutting-edge technology will make 

the Objective Force the most lethal, survivable, and mobile force ever employed. 

C. ARMY OPERATIONS 

To accurately model the reality of combat, it is imperative that a broad base line 

of Army doctrine and the fundamentals of fire support are understood and accounted for. 

Knowing doctrine offers insight into what assumptions can be made and how they will 

affect the simulation.  Since gaining a basic understanding of Army doctrine is so crucial 

to understanding what this thesis is attempting to measure and how, included are a few 

short, concise paragraphs on the doctrine and tactics behind Army operations. 

Doctrine for all Army Operations are outlined in the Army Field Manual 

designated FM 100-5.  Although that doctrine is updated slightly from time to time, 

“[f]undamental to operating successfully across the full range of military operations is an 

understanding of the Army's doctrinal foundations the principles of war and the tenets of 

Army operations” (FM 100-5, Chapter 2).  Below is a brief definition of those timeless 
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concepts, which will help the reader to understand the doctrine behind how the Army 

fights and wins.   

1. Principles of War 

The nine principles of war provide general guidance for the conduct of 
war at the strategic, operational, and tactical levels.  They are the enduring 
bedrock of Army doctrine. The US Army pub lished its first discussion of 
the principles of war in a 1921 Army training regulation. The original 
principles adopted by the Army, although slightly revised, have withstood 
the test of time. Today's force-projection Army recognizes the following 
nine principles of war (FM 100-5, Chapter 2). 

- Objective.  Essentially every conflict has an ultimate objective.  All 

military operations should be focused on attaining that objective.  Actions and 

intermediate operations that do not contribute to attaining the ultimate objective should 

be avoided. 

- Offensive.  Offensive operations seize that initiative from the enemy.  

They make him react to us.  They are the most effective and decisive actions that can be 

taken to obtain the objective. 

- Mass.  Mass the effects of overwhelming combat power at the decisive 

place and time. 

Synchronizing all the elements of combat power where they will have 
decisive effect on an enemy force in a short period of time is to achieve 
mass. To mass is to hit the enemy with a closed fist, not poke at him with 
fingers of an open hand. Mass must also be sustained so the effects have 
staying power. Thus, mass seeks to smash the enemy, not sting him. This 
results from the proper combination of combat power with the proper 
application of other principles of war. Massing effects, rather than 
concentrating forces, can enable numerically inferior forces to achieve 
decisive results, while limiting exposure to enemy fire (FM 100-5, Chapter 
2). 
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- Economy of Force.  The principle behind Economy of Force is to allocate 

the minimum amount of combat power to secondary, low threat, and/or low priority 

efforts.  Effective use of this prinicple allows for the maximum massing of combat power 

where it is most needed. 

- Maneuver.  Place the enemy in a position of disadvantage through the 

flexible application of combat power. 

Maneuver is the movement of forces in relation to the enemy to gain 
positional advantage. Effective maneuver keeps the enemy off balance and 
protects the force. It is used to exploit successes, to preserve freedom of 
action, and to reduce vulnerability. It continually poses new problems for 
the enemy by rendering his actions ineffective, eventually leading to 
defeat.  At all levels of war, successful application of maneuver requires 
agility of thought, plans, operations, and organizations. It requires 
designating and then shifting points of main effort and the considered 
application of the principles of mass and economy of force. At the 
operational level, maneuver is the means by which the commander 
determines where and when to fight by setting the terms of battle, 
declining battle, or acting to take advantage of tactical actions. Maneuver 
is dynamic warfare that rejects predictable patterns of operations (FM 100-
5, Chapter 2). 

 
- Unity of Command.  For every effort or operation there should be one 

commander whose goal it is to synchronize all assets into an operation aimed at attaining 

the objective.  Unity of command helps us mass our combat power at the decisive place 

and time. 

- Security.  Security of the force gives the commander flexibility by 

reducing the enemy’s opportunity to surprise us and reducing our vulnerability. 

- Surprise.  Strike the enemy at a time or place or in a manner for which he 

is unprepared. 
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Surprise can decisively shift the balance of combat power. By seeking 
surprise, forces can achieve success well out of proportion to the effort 
expended. Rapid advances in surveillance technology and mass 
communication make it increasingly difficult to mask or cloak large-scale 
marshaling or movement of personnel and equipment. The enemy need 
not be taken completely by surprise but only become aware too late to 
react effectively. Factors contributing to surprise include speed, effective 
intelligence, deception, application of unexpected combat power, 
operations security (OPSEC), and variations in tactics and methods of 
operation. Surprise can be in tempo, size of force, direction or location of 
main effort, and timing. Deception can aid the probability of achieving 
surprise (FM 100-5, Chapter 2). 

- Simplicity.  Prepare plans and orders in a manner that is clear and concise.  

Tired leaders and soldiers have a difficult time issuing and following complex, unclear 

plans.  A mediocre but simple plan executed vigorously and flawlessly is superior to a 

perfect, complex plan whose execution is laden with mistakes and misunderstandings. 

2. Tenets of Army Operations  

Whenever Army forces are called upon to fight, they fight to win. Army 
forces in combat seek to impose their will on the enemy; in operations 
other than war, they seek to alter conditions to achieve their purpose. 
Victory is the objective, no matter the mission. Nothing short of victory is 
acceptable. The Army's doctrine describes its approach to generating and 
applying forces and force at the strategic, operational, and tactical levels.  
The Army's success on and off the battlefield depends on its ability to 
operate in accordance with five basic tenets: initiative, agility, depth, 
synchronization, and versatility. A tenet is a basic truth held by an 
organization. The fundamental tenets of Army operations doctrine 
describe the characteristics of successful operations. All training and 
leadership doctrine and all combat, combat support, and combat service 
support doctrine derive directly from, and must support, the fundamental 
tenets. The US Army believes that its five basic tenets are essential to 
victory. In and of themselves they do not guarantee victory, but their 
absence makes it difficult and costly to achieve (FM 100-5, Chapter 2). 

- Initiative.  Initiative is gained by action.  It implies an offensive mindset 

and is gained by creating options for your own forces while constraining the options of 

your foe.  Initiative on the battlefield requires leaders to anticipate events at all levels so 
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their forces can act and react quicker than the enemy.  In the attack it means gaining the 

initiative through surprise and maintaining the initiative through a fast, aggressive tempo 

that keeps the enemy in a constant state of disorientation.  In the defense it means quickly 

turning the tables and shifting to the offensive.  Initiative requires decentralization of 

decision-making authority to the lowest practical level, while maintaining a synchronized 

effort.  Initiative is our ability to control where we fight, when we fight, and under what 

conditions we fight. 

- Agility.  Agility is our ability to react quicker than the enemy.  It gives us 

the ability to quickly concentrate our forces on enemy weaknesses.  Agility is needed to 

acquire and retain the initiative. 

- Depth.  Depth is the extension of the dimensionality of operations.  

Considering the depth of the battlefield involves consideration of space, time, resources, 

information, and the objective.  Attacking in depth involves disrupting and defeating the 

enemy in these areas simultaneously.  Employing our forces in depth involves using all 

available assets maximally.  “Depth allows commanders to sustain momentum and take 

advantage of all available resources to press the fight, attacking enemy forces and 

capabilities simultaneously throughout the battlefield. Momentum in the attack and 

elasticity in defense derive from depth” (FM 100-5, Chapter 2). 

- Synchronization.  Synchronization is arranging activities in time and 

space to mass combat power at the decisive point and time.  Synchronization of the fight 

gives us the ability to attack the enemy at multiple points with multiple assets in depth, 

sequentially, and simultaneously. 
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- Versatility.  A versatile Army can adapt to meet diverse mission 

requirements. 

It suggests that all military organizations must have the ability to organize 
in different combinations of units and the capacity to redeploy from one 
area or region to another without the loss of focus. Versatility is the result 
of well- led, well- trained, and well-equipped forces; high standards; and 
detailed planning. Versatility ensures that units can conduct many 
different kinds of operations, either sequentially or simultaneously, with 
the same degree of success (FM 100-5, Chapter 2). 

3. Fire Support in the AirLand Battle 

AirLand Battle encompasses the three aspects of an operation: the deep operation, 

close operation, and rear operation.  Deep operations attack the enemy in the battlespace 

beyond the close fight.  Deep operations shape the close fight.  Forces that are in 

immediate contact with the enemy are involved in close operations.  Generally close 

operations are considered to be the current fight at the Corps and lower levels.  Rear 

operations are generally protection and sustainment operations in the rear areas of our 

force.  They can be targets of enemy deep operations.  All three of these aspects of the 

AirLand battle must be executed simultaneously by the maneuver commander in order to 

defeat the enemy. 

Fire support assets in the AirLand battle include all indirect-fire weapons, armed 

aircraft, and other lethal and non-lethal means.  It includes mortars, field artillery, naval 

gunfire, and air delivered weapons, which include all conventional, chemical, and tactical 

nuclear munitions.  Nonlethal means include EW, illumination, and smoke.  The purpose 

behind fire support is to support the scheme of maneuver, mass fires, and delay, disrupt, 

or destroy enemy forces in depth.  Fire support destroys, neutralizes, and suppresses the 
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enemy through synchronizing all fire support assets with the scheme of maneuver to 

accomplish the mission. 

The field artillery is the principal means of fire support available to the maneuver 

commander, and is doctrinally responsible for the integration of all fire support assets in 

support of the maneuver commander’s plan.  As the senior coordinator of all fire support 

assets, the fire support coordinator (FSCOORD) from the field artillery is responsible for 

the integration of all fire support means to support the maneuver commander in the close, 

deep, and rear fight. 

(a) The Army Fire Support Team 

(1) Forward Observers.  Forward observers are considered 

the eyes of the artillery.  They identify the target and determine the location of the target 

in a manner that can be pinpointed on a military map.  Based on the information they 

have about the target (posture, speed, dispersion, etc.) and the environment the target is in 

(snow, swamp, open fields, etc.) the forward observer formulates a fire mission using the 

following three separate transmissions: 

• Observer identification and warning order.  In this transmission the observer 

identifies himself and lets the fire direction center (FDC) know what type of fire mission 

he is going to request (example: fire for effect). 

• Target location.  In this transmission the observer tells the FDC the location of 

the target. 

• Description of target, method of engagement, and method of fire and control.  

Finally, the observer describes the target (example: enemy platoon in the open), 
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designates a method of engagement (example: high angle, high explosive), and a method 

of fire and control (example, at my command). 

(2) Fire Direction.  The FDC is the brains of the artillery.  

The FDC takes this request for fire and formulates an actual fire mission based on the 

tactical situation, the location of the howitzers, and available munitions.  He develops 

technical firing data (what direction and elevation to fire, which munitions, and what 

amount and type of propellant) for the howitzers.  This technical firing data is passed to 

the howitzers. 

(3) Howitzers.  The howitzers are the brawn of the artillery.  

They take the fire mission data from the FDC, load that data into the howitzer, and fire 

the mission. 

(b) Naval Gunfire 

Calling in Naval gunfire is similar to calling in field artillery.  The forward 

observer is still the eyes, but the fire direction and the gun systems are linked together as 

one and execute the mission as a unit.  There are several challenges to calling in Naval 

gunfire.  The format of the fire missions are different, the communications nets are 

different (HF versus FM), and the ballistic trajectories, types of munitions, etc can be 

very different.  These differences create difficulties in calling for and adjusting naval 

gunfire, but for the purposes of this thesis most of these difficulties will be modeled using 

one or two simple parameters to be discussed later. 

D. THE ARMY OF THE FUTURE AND NAVAL SURFACE FIRE SUPPORT 

The Army has always been a self-sufficient force capable of sustained ground 

operations.  Other than logistics requirements, the Army has also been capable of 

executing its missions independent of the other services once deployed.  This capability is 
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a desirable one, and was a necessity when the United States alongside NATO was poised 

for combat against the Soviet Union and the Warsaw Pact.  In order to create a force that 

has the rapid deployment capability of the Objective Force, the Army must reduce its 

logistic footprint and maximize its ability to integrate and utilize fires from other sources.  

Reducing the logistic footprint is accomplished by the development of equipment that 

shares many common parts; the development of lighter, more lethal, multi-purpose 

munitions; and by reducing the size of the force without reducing its lethality. 

Reducing the size of the force without diminishing its lethality is accomplished by 

cultivating and developing the ability for reach-back fires and effects.  These fires and 

effects can include EW and ADA support from ships in the area, electronic support and 

laser munitions from space, deep and close strike support from the Air Force, Navy, and 

Marines, and fire support from adjacent Marine, Army, Naval assets, just to name a few.  

This thesis focuses on the effectiveness of reach-back fires from NSFS assets in range of 

Army operations in the littoral. 

E. FIRE SUPPORT WEAPONS CAPABILITIES AND LIMITATIONS 
OVERVIEW 

For simplicity the only assets analyzed and compared are field artillery and Naval 

guns in Battery mass missions.  The effect of mortar fire is not included in the analysis.  

The data below include only what is needed to conduct the thesis. 

1. Year 2005 (IBCT) 

By year 2005 the Army expects to have five Divisions outfitted with IBCT 

brigades.  This force will be designed with current off-the-shelf technology and will meet 

the CSA’s intent of one brigade deployed in 96 hours, one Division on the ground in 120 

hours, and five Divisions on the ground in 30 days.   
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The primary indirect fire weapon system used by the IBCT will be the Paladin 

howitzer.   The Paladin is capable of firing up to eight rounds in one minute and can 

engage targets up to 30,000 meters away using a high explosive round.  The howitzer and 

its ammunition support vehicle can carry 138 complete rounds, and there will be six 

Paladin howitzers and ammunition support vehicles in an artillery battery (Paladin, 

WebSite for Defence Industries). 

The primary ship that will provide naval gunfire in support of Marine and Army 

units will be the DDG-51, a destroyer.  The DDG-51 is currently being upgraded, and 

should be capable of engaging targets up to 63 nautical miles away or about 112,300 

meters (Lisiewski and Whitmann). 

2. Year 2015 (FCS-OF) 

By the year 2015 the Army will have fielded the FCS-OF.  The capabilities and 

limitations of the weapons systems available for the Objective Force are projections 

based on Army and Navy requirements statements for the Crusader howitzer and the DD-

21. 

The primary indirect fire weapon system organic to the Objective Force will be a 

futuristic howitzer designated as the Crusader throughout this analysis.   The Crusader 

should be capable of firing ten rounds in one minute and engaging targets at ranges 

greater than 40,000 meters.  The howitzer and its ammunition support vehicle should be 

able to carry around 160 complete rounds (Crusader, WebSite for Defence Industries). 

The primary ship that will provide naval gunfire in support of Marine and Army 

units will be the DD-21.  The DD-21 will be capable of engaging targets up to 100 

nautical miles away (about 178,200 meters).  The DD-21 is projected to have two guns 
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per ship with a maximum firing rate of 24 rounds per minute and a magazine capacity of 

over 1200 rounds (Lisiewski and Whitmann). 

F. THESIS STRUCTURE 

Chapter II will describe the methodology used in identifying the measures of 

effectiveness, creating and implementing the courses of action (COA) and scenarios for 

the simulation, and developing the logic, assumptions, and interactions that drive the 

simulation.  Chapter III will provide a detailed analysis of the output from each scenario 

and COA.  Chapter IV will summarize the results of the simulation, outline conclusions 

and insights gained from the simulation, and provide recommendations for further 

research of this subject. 
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II.  RESEARCH METHODOLOGY 

A. OBJECTIVE 

The objective of this thesis is to determine the effectiveness of NSFS to the Army 

at brigade level and below in a littoral campaign.  In order to determine the effectiveness 

of NSFS, the objective is defined in terms of measures of effectiveness or MOE’s.  The 

process of determining the MOE’s begins by defining the problem statement in several 

more concise sub-objectives, called top- level objectives.  When the top- level objectives 

are met, the system being measured or analyzed is effective.  The process continues by 

successively redefining each of the higher- level objectives with lower- level objectives 

that are needed to satisfy them.  These objectives continue to be redefined until they are 

quantitative in nature.  These quantitative objectives are the bottom-level objectives or 

MOE’s (Armstrong, p. 4-3). 

These objectives are assembled in a tree-like structure beginning with the 

problems statement at the top and ending with the MOE’s at the bottom.  The final 

product shows the methodology used to determine the MOE’s.  This is a clear and 

concise picture of the problem statement and the data needed to analyze the problem 

effectively. 

B. DETERMINING THE MEASURES OF EFFECTIVENESS 

Effectiveness of any fire support asset can be analyzed by considering its ability 

to satisfy the following four objectives: Reliability, Lethality, Flexibility, and 

Survivability.  Those four objectives are lower- level objectives to the overall objective of 

measuring the effectiveness of NSFS. 
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While all four objectives are important, for the purposes of this study differences 

in survivability between systems can be assumed to be negligible and are therefore not 

included.  Survivability of an asset is how robust that system is on the battlefield.  It 

involves issues such as maintainability, ability to withstand harsh conditions, protection 

of the crew, and ability to hide from, evade, or withstand enemy indirect and direct fire 

systems.  To measure the survivability of a particular indirect fire system may require a 

very detailed simulation that could measure and replicate the enemy’s ability to attrit or 

reduce the effectiveness of the system, account for the effects of weather and other 

conditions that affect maintenance, and a host of other contributors and detractors from 

survivability.  The focus of this thesis is on the effectiveness of indirect fire systems, 

specifically the capability of NSFS to engage enemy targets to standard for the Army.  

Although survivability cannot be discounted, we make the assumption that the 

survivability of the assets being compared is reasonably similar and can be mitigated to 

the point where they are negligible in this study.  In short, survivability, although 

important is not the crux of this analysis, and should be considered separately. 

Dissecting the remaining top- level objectives in turn gives a quantitative way of 

analyzing the effectiveness of NSFS.  The top-level objectives for determining the 

effectiveness of NSFS are shown in Figure 2.1 below. 
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Maximize
Reliability

Maximize
Flexibility

Maximize
Lethality

To maximize the effectiveness of lethal indirect fires
available to Army Objective Force commanders
at Brigade level and below in locations within

 reach of Navy ship fires.

 
Figure 2.1:  Objectives Tree 

1. Maximize Reliability 

Reliability is an important part of integrating an asset into an operation.  For an 

Army brigade commander to effectively integrate and synchronize the indirect fires into 

an operation, he must know that the asset will deliver its munitions on target at the 

prescribed place and time.  The Reliability objectives tree below outlines the procedure 

and thought process behind determining the measurable, bottom-level tasks that 

determine the reliability of indirect fires. 

Maximize Percentage
of Missions Fired

(%)

Maximize Percentage
of Successful Missions

(%)

Maximize
ability to

Respond to Fire Missions

Minimize Average
Mission Time

(time)

Maximize
Timeliness/

Mission Response Time

Maximize
Reliability

 
Figure 2.2:  Reliability Objectives Tree 

To a brigade commander reliability of indirect fires generally consists of two 

screening criterion: (1) capability of an asset to respond to and engage various threats and 
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(2) timeliness in its response to the request for indirect fires.  Quantifying each of these 

objectives results in the lowest level objectives needed to measure reliability.  These 

lowest level measurable objectives are the percentage of missions that the asset was 

capable of engaging, the percentage of those missions that were successful,  and the time 

that each asset took to engage each threat.   

The percentage of missions that each COA could engage encompassed the 

brigade commander’s first criteria for reliable indirect fires.  This bottom-level objective 

tells the brigade commander whethe r the assets at his disposal can cover a sector of his 

tactical plan with the ammunition available. 

The percentage of successful missions pertains to the second of the brigade 

commander’s criterion.  Measuring the percentage of successfully engaged targets of 

those that could be engaged tells the brigade commander how responsive the indirect 

fires are to his requests.  It measures their ability to reliably engage the targets he wants 

engaged and inflict the requisite damage on those targets. 

The average time to engage targets is a measure of the timeliness of the indirect 

fires in a particular COA.  This pertains to the brigade commander’s third criterion.  The 

objective tree for reliability is shown in Figure 2.2. 

2. Maximize Flexibility 

Flexibility is the ability of an asset to perform and successfully accomplish 

diverse missions.  Flexibility includes more than the ability to range targets.  It includes 

having the right munitions to engage hardened targets and having the precision to engage 

targets that are positioned in awkward or protected locations.  The three sub-objectives 

listed below were identified as crucial to measuring flexibility. 
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High precision allows an asset to be used to engage targets that are in close 

proximity to friendly troops or noncombatants.  By measuring the number of errant 

rounds that induce collateral damage in each scenario, the simulation can measure the 

precision of indirect fires in that scenario.  By carefully modeling this parameter, 

collateral damage for different environments can be measured.  For example, in a rural 

setting, on average, collateral damage might only be induced by 0.1 percent of the rounds 

that are errant by 200 or more meters, while in an urban setting, collateral damage might 

occur with a 50% chance if a single round misses its mark by more than 50 meters.  

These specific parameters are included in the scenario. 

Maximizing coverage allows one asset to provide indirect fires in the maximal 

number of situations.  By measuring the percentage of the area of operations covered by 

indirect fires, we can compare the differences in different courses of action. 

Ultimately, maximizing flexibility consists of the following two bottom-level, 

measureable objectives: number of rounds that cause collateral damage and percentage of 

the area of operations that is covered by indirect fires.  The objectives tree for 

maximizing flexibility is shown below in Figure 2.3. 

Minimize theNumber
of Rounds that Cause

Collateral Damage
(#)

Minimize
Errant Rounds

Maximize the Percentage of
the Area of Operation

with indirect fire coverage
(%)

Maximize
Coverage

Maximize
Flexibility

 
Figure 2.3:  Flexibility Objectives Tree 
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3. Maximize Lethality 

Lethality is the cornerstone of Army operations.  Without lethality, or the 

perception of lethality, we are ineffective.  Precision and massing of indirect fires attains 

lethality.   

By maximizing the availability of artillery at any given moment, we can measure 

the extent to which we can mass fires.  It is worthwhile to note that although this 

objective is listed under lethality, it is really a multidimensional objective that gives the 

commander a measure of flexibility and reliability as well.  The average availability of 

firing platforms indicates how likely it is that at any given moment he can effectively 

engage a target (reliability), and can serve as an indicator to the commander that he has 

the flexibility to shift assets and move assets on the battlefield to enhance his ability to 

engage the enemy.  Ultimately, maximizing the availability of firing platforms provides 

the commander with the lethality he needs to mass indirect fires, the flexibility he needs 

to move assets on the battlefield, and the reliability he wants to immediately engage 

targets as they become available. 

A single fire mission supports the overall mission of the organization by doing its 

part in the concept of the operation.  By maximizing the total percentage of missions 

engaged successfully, the success of the mission is maximized.  This differs from the 

reliability measurement, since it only measures the percentage of missions that result in 

success of the ones engaged (# success/# engaged * 100%), while reliability measures the 

percentage of targets successfully engage with respect to the total number that arrive (# 

success/total * 100%).  The objectives tree for maximizing lethality is shown below in 

Figure 2.4.  
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Maximize number
of available firing platforms

(average number of
available firing platforms)

Maximize Availability
of Indirect Fires Assets

Maximize
Ability to Mass Indirect Fires

Maximize the
Percentage of Missions
Engaged Successfully

(%)

Maximize
Mission Success

Maximize
Lethality

 
Figure 2.4:  Lethality Objectives Tree 

C. DECISION MATRIX 

The top- level objectives of each objectives tree are those objectives that are most 

important for measuring the effectiveness of indirect fires to the brigade commander, 

while the bottom-level objectives provide a quantifiable and measurable method of 

comparing the performance of the top- level objective under different scenarios. These 

bottom-level objectives are measures of effectiveness (MOE’s) for the top- level 

objectives.  They are the quantitative data that help the decision-maker pick a COA. 

To measure the effectiveness of each COA, multi-attribute utility theory or 

MAUT, was used.  This method provides a simple, relatively intuitive way to weight and 

quantify the value of very different decision-making criterion.  To use MAUT, two basic 

assumptions must be met: 

1. It must be possible for the decision maker to consider and 
judge the relative weight of any combination of factors.  That is, it 
must  be possible to consider not only the weight of factor 1 (F1), 
but also the weight of both F1 and F2. 

2. Weights are assumed to be additive.  That is, given the weight 
of F1 and the weight of F2, the weight of both F1 and F2 is the sum 
of their individual weights (Canada and Sullivan, p223). 
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If both of these assumptions hold, the decision maker can measure and compare 

the effectiveness of each COA in a given scenario us ing MAUT.   First, the decision-

maker or his representative weights each of the MOE’s based on its relative importance.  

Each raw score for each MOE in a particular COA is then compared with the 

corresponding raw scores from each other COA.  The “best” raw score is assigned a 

utility of 1, while the “worst” raw score is assigned a utility of 0.  Utility of the remaining 

MOE’s is assumed to be linear, and is computed using the following formula, where i = 

MOE number, j = COA number: 

  Utility Score MOEi,j = (xi,j-worsti,j)/(besti,j-worsti,j), ∀ i,j 

To get the utility score for MOE1,1 (1st MOE for the 1st COA), the raw score of the 

worst1,1 is first subtracted from x1,1.  This quantity is then divided by the raw score of the 

worst1,1 subtracted from the best1,1. 

The total utility of each COA is computed using the following formula: 

∑
=

∀
n

i
jjiji WEIGHTMOE

1
,, * L  

The best COA is the COA with highest total utility score (Canada and Sullivan, p. 

228). 

D. SIMULATION – DEVELOPING A FIRE SUPPORT SIMULATION TOOL 
(FSST) 

The Fire Support Simulation Tool (FSST) is a discrete-event simulation written in 

the programming language JAVA.  The simulation uses Simkit, a discrete-event 

simulation package created by Assistant Professor Arnold H. Buss and LT Kurt Stork 

written in JAVA (Stork, 1996). 
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The objective of the FSST is to obtain the raw MOE data for each COA as 

determined by the value systems design described earlier.  Although high-fidelity 

simulations exist that can provide the raw MOE data, they are cumbersome, complex 

simulations that take days, weeks, and even months to prepare and execute.  Even then, 

these simulations do not package the output in a way that can be easily interpreted. 

The objective of the FSST is to provide the user with a portable simulation that 

can be prepared and executed in minutes, is simple to use, and provides results in an 

easy-to-read and understand format using intuitive analysis techniques that anyone can 

understand.  The intent of the simulation is to provide quick, broad insight into the 

advantages and disadvantages of different task organizations of indirect fire assets (each 

task organization represents a different COA), and to provide a quantitative measure of 

the effectiveness of that task organization.  By investigating a well-selected sample of 

COA’s the effectiveness of NSFS can be determined. 

1. Why Simulation 

Because of the complex, stochastic nature of this problem, there is no closed-form 

solution to measuring the effectiveness of NSFS.  Because of this, simulation is good tool 

to investigate the effectiveness of NSFS using the MOE’s outlined above (Law and 

Kelton, p. 6).  By accounting for the stochastic nature of target arrival times and fire 

mission times, a simulation can draw a complete picture of the strengths and weaknesses 

of each COA in terms of the MOE’s and their variances when applicable.  This is 

powerful information for a decision-maker and offers valuable insight into the 

performance of the assets being evaluated.  For example, a commander who is very 

concerned with success of critical fire missions might choose an asset that is more stable 
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(has lower variance in success rate) over one that is more chaotic with a higher average 

success rate.  This simulation should reveal those chaotic behaviors allowing the 

commander to make a more informed decision.  Since this simulation is easy to set-up 

and execute, it should also allow any staff to quickly create and run multiple courses of 

action (COA’s) for each scenario.  The staff can then present the results and their analysis 

and their best scenarios to the decision-maker, expanding his flexibility and offering even 

more insight into the behavior of his assets in his environment. 

2. Java and SIMKIT Overview 

Java is an object-oriented language that is ideal for this simulation.  By depicting 

processes, entities, and actions as objects, Java creates a tangible, intuitive, expandable, 

model of reality in its programs.  This coupled with the fact that Java is a high- level, 

powerful, platform independent programming language makes it an ideal programming 

tool for this thesis.  Simkit is a flexible simulation tool kit that allows the coupling of 

many independent objects into one complex simulation.  Taken as whole, Simkit and 

Java offer unmatched flexibility and robustness for creating a simulation tool. 

Simkit is a discrete-event simulation tool that uses next-event time advance.  A 

discrete-event simulation models a system as it changes state over time.  Next-event time 

advance simulations model only the changes in the environment, such as arrival of a 

target firing of a target, etc. (Law and Kelton, p. 6).  By contrast, fixed-increment time 

advance simulations model the state of the system at each discrete time-step.  For the 

purpose of this thesis, the discrete event simulation will be discussed within the context 

of the next-event time advance model.  This method facilitates modeling the behavior of 

the fire support battle by maintaining a high level of time fidelity while reducing run 
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times by fast-forwarding to the times in the COA that are eventful.  For example, by 

running a time-step scenario of a peacekeeping mission, we might find that we execute a 

specific fire mission once every three months or 7,776,000 seconds plus the actual 

(insignificant) mission execution time.  If we ran this simulation 1,000,000 times faster 

than real time, and we wanted mission times in seconds, it would take an average of 

7.776 seconds per trial and 7,776 seconds or over two hours to execute 1000 trials to get 

confidence interval and variance data.  By using an event-based simulation, if average 

mission times were ten minutes, we would only have to execute that ten minutes for each 

trial.  This would take an average of 0.0006 seconds per trial and about 0.6 seconds to 

execute 1000 trials.  While both methods are viable and work, one is clearly a better 

choice. 

3. Queuing Theory 

In general terms, queuing systems consist of one or more servers that provide a 

service to an arriving customer.  Customers arrive at discrete times for service.  When 

they find that all servers are busy they generally enter one or more queues in front of the 

server.  Queuing models attempt to model the behavior of queuing systems by 

quantifying the interarrival and interservice times of the customers and the servers (Law 

and Kelton, p. 94). 

The arrival and service of customers at a gas station fit the description of a system 

that can be modeled using queuing theory.  At a gas station, customers arrive and are 

serviced in much the same manner that fire missions arrive and are serviced by available 

indirect fire assets.  This analogy is surprisingly accurate, as will be explained below. 
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Consider for example that a car arrives at the service station.  There are several 

different types of vehicles.  For the purposes of a gas station there would probably be at 

least four different types: those that run on regular unleaded, unleaded plus, super 

unleaded, and diesel.  Once we have decided what type of vehicle we have, we then look 

for a pump that provides that type of fuel.  If one is available we fuel up.  If not, we get 

into a line or queue. 

Now, imagine fire missions as cars and indirect fire assets as the fuel pumps.  

Each fire mission has attributes such as arrival time, type (armor, infantry, etc.), location, 

and desired effects by the server (destroy, neutralize, or suppress).  Each different type of 

mission is defined by it attributes, which are analogous to the different types of cars 

(diesel, unleaded, etc.). 

The servers are the indirect fire platforms whose mission it is to change the  status 

of the target from its initial condition to one of destroyed, neutralized, or suppressed.  

Each server or shooter has a list of attributes that facilitate its ability to inflict the desired 

effects on the target.  They include: 

• the shooter’s location 

• service time and distribution of each fire mission 

• the shooter’s rate of fire 

• lethality and accuracy of the round 

• the number of gun tubes associated with the shooter 

• the number of rounds the shooter has available 
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Each shooter is defined by its attributes, which are used to model the different types of 

indirect fire assets such as Paladin battalions, DDG-51’s, or M198 batteries.  For the 

purposes of this thesis, the FSST will assume only a few of the more common fire 

mission types and will limit the characteristics of the delivery systems to what is 

necessary to execute those fire missions. 

4. Event Graph Development 

The event graph shown in Figure 2.5 is a basic depiction of how the simulation 

works.  The actual model is too complex to show in one simple event graph, but the basic 

model is depicted below in this one-dimensional event graph of a queuing model with 

one target or fire mission type and one server type. 
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Parameters
  ta = time between arrivals of targets
  tr = time between recognizing a repeat mission and it being fired
  ts = time to service the next FM in the queue
  k = total number of artillery assets available
  l = damage needed to ensure desired effects
  m = flight criterion of target
  inRange = computation to determine whether target is in range of artillery
State Variables
  TGT = number of targets that have arrived
  queue = number of targets in the queue
  REFIRE = number of missions refiired
  S = number of available artillery assets (shooters)

Target
Arrives
Request

FM

ta
Add

FM to
Queue

TGT++ queue.back()

Service
FM

S>0

ts

End
FM j

S+
+

~
BDA >= l ||
FLEE >= m
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BDA = U(0,1)
FLEE = U(0,1)

BDA <l & FLEE < m~

Repeat
(add tgt
to front)

queue.front()
REFIRE++

tr

RUN

(START)

REFIRE = 0
TGT = 0
S = k

inRange

ts

 
Figure 2.5:  Event Graph 

The circle with RUN sets up the queuing model by initializing all attributes.  The 

simulation begins with the arrival of a target that causes the model to initiate the arrival 

of another target at some discrete time, ta, in the future (circle with “Target Arrives, 

Request FM”).  The interarrival time, ta, of the targets is modeled by random exponential 

interarrival times.  When a fire mission arrives, it is queued if it is within range of a 

shooter (circle with “Add FM to Queue”).  The algorithm discussed above determines the 

shooter whose queue that fire mission goes into.  If the shooter is immediately available, 

the fire mission is processed ts time units later (circle with “Attack tgt”).  The parameter ts 

is a function of the range from the shooter, the shooter type, and other variables. 
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Once the target is attacked, if the desired results are achieved or the target has 

fled, the mission is ended (circle with “End FM”) and that shooter becomes available for 

another fire mission.  If that particular shooter has another fire mission in the queue, it 

services that fire mission ts time units later.  If the desired results are not achieved and the 

target is still available, the fire mission is immediately repeated, with effects being 

considered tr time units later.  The parameter tr is based on the time it takes for that 

particular shooter to refire the mission. 

Although this event graph does not depict it, the FSST computes and maintains 

the number of arrivals, the number of missions rejected for any reason (such as range or 

lack of ammunition), and the number of successful and unsuccessful missions. 

5. The Simulation 

(a) Simulation Overview 

Each arriving target is identified and engaged somewhere in a box that we 

consider the area of operations.  To simulate different types of missions, units, and/or 

tactics the user can vary the size of that box.  Throughout the battle, these targets would 

be identified and engaged in different areas of the box. 

The distribution of the arriving targets within the box is scenario-based, 

and can be varied by the user.  For instance, in a guerilla-type operation where there is no 

built-up enemy, and our forces are deployed in a decentralized manner, we might expect 

to acquire targets uniformly across the box since the enemy has freedom of maneuver and 

he is probably much more familiar with the terrain than we are.  By contrast, in a 

conventional-type operation, we might expect to acquire targets uniformly across our 

front and exponentially in the depth of our position since we own the ground we are 
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occupying and have well-defined boundaries that are protected.  Again, to best model the 

scenario, the user can vary each of these. 

The user will also be able to tactically place his artillery battalions and 

naval assets in the area of operations according to the scenario.  Artillery and ships, once 

placed, will not move throughout the scenario.  Figure 2.6 is a graphic depiction of a 

sample scenario with artillery and naval range fans depicting limits of engagement for 

these assets.  The user will be able to easily set up, simulate, and analyze a scenario like 

this. 

Arriving
targets are
distributed
according to
some logical
distribution
scheme based
on the
scenario
(probably
uniform) in
this region.

Arriving targets are distributed
according to some logical distribution
scheme based on the scenario
(probably exponential) in this region.

Enemy Direction
Of Advance

 
Figure 2.6:  Sample Scenario Graphic 

Each scenario involves running the simulation for each COA listed above.  

By varying the inputs for the model such as parameters for the indirect fire assets and the 

properties of the area of operations (dimensions and distribution of arriving targets) the 

FSST can model the scenario in which each COA will occur. 
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(b) Target Arrivals 

Targets arrive at a rate corresponding to a distribution.  Based on past 

simulations, targets probably would arrive at an exponential rate with a mean based on 

the situation.  This simulation allows the user to determine the arrival rate of the targets 

and the mean interarrival time (i.e. exponential with mean 5.0).  Each target will then be 

further defined by its type – armor, armored personnel carriers, light skinned vehicles, 

infantry in the open, or infantry dug in, and the mission associated with the target, 

destroy, neutralize, or suppress.  Again, the user can determine the percentages of each 

type of target and the mission associated with each target. 

An example of how the arrival process works is as follows.  A random 

number generator determines the arrival time of the first target.  Another randomly 

generated number stochastically determines the target type.  A third randomly generated 

number determines the mission associated with the target, and a random target location is 

generated based on the distribution of the locations of targets.  The first target then enters 

the model, and another target arrives at a randomly generated interarrival time based on 

the arrival distribution, and the process begins again.  The distribution of target types and 

mission types used for this thesis are shown below in tables 2.1 and 2.2. 

Mission Types Percentage 
Destroy 30% 

Neutralize 50% 
Suppress 20% 

Table 2.1:  Distribution of Mission Types 
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Target Types Percentages 

Armor 40% 

Infantry in the Open 10% 

Infantry Dug In 0% 

Armored Personnel Carrier 30% 

Light Skinned Vehicle 20% 
Table 2.2:  Distribution of Target Types 

(c) Target Servicing 

When a target enters the model, it becomes a fire mission and is sent to a 

specific artillery or naval gunfire unit called a shooter.  Each shooter is queried to 

determine whether it can range the particular target and whether it has the ammunition 

needed to engage the target.  Once it has been determined which assets can effectively 

engage the target, an asset is chosen based on a weighting of the following criteria – 

platform or shooter type (NSFS or field artillery), number of fire missions in that 

shooter’s queue, probable error in range, and shooter to target range. 

A version of MAUT is used for the selection of a shooter for each target.  

The value of each of the first three criteria for a particular shooter is compared with the 

corresponding values of all shooters that can effectively engage the target. Subscripting 

the criteria being compared using the letter j, the utility of each shooter is computed with 

respect to each criteria using the following formula: 

  Utility = (xj-worstj)/(bestj-worstj) 

The total utility for each shooter is then determined using the following 

formula: 

FANSFS
i

ii WEIGHTWEIGHTWEIGHTUtility ++
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*  
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The shooter that gets the fire mission is the one with the highest total 

utility score.  If no assets have the required number of rounds to effectively engage the 

target, the asset with the most rounds that can range the target is chosen.  The fire mission 

is then put into the shooter’s queue.  Figure 2.7 below is a flow chart depicting how a 

specific shooter is selected. 
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Figure 2.7:  Fire Mission Engagement Process 
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The simulation tracks which assets can and do engage, the total time 

between the arrival and the execution of the fire mission, the number of successful, 

unsuccessful, and rejected fire missions, and the number of rounds that cause collateral 

damage.  It can then, through simulation, assign values to each MOE under each COA. 

(d) Target Engagement 

Each shooter engages targets when they are at the front of the queue and 

no targets are being serviced.  The processing time (tp) and engagement  times (te) are 

randomly determined from the distribution of the processing and engagement times 

entered for that shooter, and the time of flight (tof) for the rounds is computed based on 

the target range.  By accounting for the rate of fire, the number of rounds desired, and the 

number of guns associated with the chosen shooter the total time for the fire mission can 

be computed using the following formula: 

tp + te + tof + (#rounds)/(# tubes)*(rate of fire) 

(e) Mission Success 

The location where each round lands is determined stochastically using the 

probable error in range, probable error in deflection, and shooter-target range.  The 

definition of success for a particular mission is pre-determined in the scenario, and is a 

function of the number of rounds that land within a certain distance of the target for a 

particular target type (i.e. armor) and mission type (i.e. destroy).  For destroy and 

neutralize missions that distance is the burst radius of the round.  For suppression 

missions, that distance is 2 times the burst radius since the objective is mainly to distract 

and rattle the enemy, not to kill him.  To determine if the mission is successful, the 

simulation compares the number of hits needed with the number of hits the target has 
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already sustained plus the number of additional hits if any.  If the total number of hits 

sustained is greater than or equal to the number needed, the mission is successful. 

If a mission is successful, the mission is ended, and the shooter fires the 

next mission in the queue, or waits for the next mission if none are currently queued.  If 

the mission is not successful, the target “remembers” how many rounds have had the 

desired effects, and the mission is repeated if 1) the target has not fled – determined 

stochastically by scenario intput and 2) if the shooter still has rounds available.  If both 

conditions are met, the mission is repeated.  If not the mission is ended and is 

unsuccessful.  The engagement time for repeated missions is generally faster than for the 

initial volley.  The assumption is that the guns are already trained on the target, and are 

awaiting repeat or end of mission orders.  The following formula determines the time for 

repeating the mission: 

tof + (#rounds)/(# tubes) / (rate of fire) 

This process is repeated until either the mission is successful, the target 

flees, or the shooter runs out of ammunition.  The total mission time is then computed 

and tallied.  Successful and unsuccessful missions are also tallied. 

(f) Rejected Missions 

If a target cannot be engaged because there are no shooters available with 

any ammunition, that mission is rejected.  Rejected missions are tallied during the 

simulation. 
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(g) When a Shooter Runs Out of Ammunition 

If a shooter runs out of ammunition, the current mission being fired ends 

successfully or unsuccessfully as outlined above, and all missions in that shooter’s queue 

are rejected. 

(h) Collateral Damage 

Collateral damage can occur each time that a target is engaged.  If a round 

misses its intended target by more than a distance predetermined in the scenario, that 

round can cause collateral damage.  Each errant round causes a random number to be 

generated, which determines stochastically whether that round causes collateral damage 

according to a predetermined percentage of errant rounds that cause collateral damage (a 

scenario input). 

(i) Coverage Area 

The area of the box that the course of action being simulated can cover is 

known as the coverage area.  The closer the number is to one, the better the COA  is with 

respect to that particular MOE.  In order to determine the coverage area, the simulation is 

run for the particular COA using 100,000 target arrivals to get as accurate a measurement 

as possible.  Additionally, each shooter is given an infinite number of rounds and the 

targets arrive at a location uniformly distributed within the box.  The coverage area can 

then be measured by taking the number of missions accepted and dividing by the total 

number of missions.  This number is then input into the COA being simulated as a 

parameter. 

E. SCENARIO DEVELOPMENT 

A scenario consists of the parameters that quantify enemy and friendly actions, 

the effects of the environment and terrain on the military operation, the level at which the 
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battle is being executed, and the year in which the effectiveness of NSFS is being 

measured.  These parameters are kept constant for each COA within the scenario so that 

COA’s can be compared using a common criterion. 

Terrain quantifying parameters include the size of the area of operations (AO), the 

definition of an errant round, and the probability of collateral damage by an errant round.  

Enemy parameters include the rate at which targets arrive, their location in the AO, and 

the target type (armor, infantry, etc.).  Friendly parameters include the distribution of the 

mission types (i.e. destroy, neutralize, suppress), the attack criterion for different targets 

(i.e. how many rounds to fire in suppression of armor), and the definition of a successful 

mission in terms of how many target hits are required to get the desired effects.  

Additionally, the scenario includes the weighting scheme the decision-maker uses to 

choose an asset to engage targets, which will be explained in more detail later. 

The level of the battle is the echelon at which the battle is being fought.  Both 

scenarios for this thesis focus on providing indirect fire support for an Army brigade-

level unit.  The year that the scenario models does not determine parameters for the 

scenario in and of itself, rather it determines what technologies and systems are projected 

to be available, which in turn dictate the parameters of the artillery platforms to be used 

in each COA.  This will be explained in more detail in the next section. 

The terrain, enemy and friendly parameters, and level of the battle will remain 

basically the same for each of the following two scenarios being modeled.  Additionally, 

since the objective of the thesis is to measure the effectiveness of NSFS to the Army 

brigade commander, the battle for both scenarios is limited to the brigade fight.  The 

major differences between the two scenarios will be the year in which they occur. 
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1. Scenario 1 – IBCT 

This scenario is called the IBCT scenario because it is centered upon the year 

2005, and therefore limits the COA’s to equipment that is either available now or is 

projected to be available by year 2005.  For the field artillery, this means the M109 

Paladin is available with a maximum firing range of 30,000 meters.  For the naval gunfire 

this means using DDG-51’s with a maximum range of 63 nautical miles (about 112,300 

meters). 

2. Scenario 2 – FCS-OF 

The FCS-OF scenario models the effectiveness of indirect fire systems that are 

projected to be available by year 2015. For the field artillery, this means the Crusader is 

available with a maximum firing range of about 45,000 meters.  For the naval gunfire this 

means using DD-21 with guns having a maximum range of about 100 nautical miles 

(about 162,000 meters). 

F. COA DEVELOPMENT 

Each COA is developed within the context of a specific scenario that determines 

the year and the tactical and operational considerations of the battle.  The year determines 

the firing platforms available for the COA. 

Each COA developed with the scenario includes which firing platforms are being 

used, their technical capabilities and limitations, and their locations on the battlefield.  

The technical capabilities and limitations of the firing platforms include maximum range, 

firing rate, probable error in range and deflection, distributions for target processing and 

preparation for firing, and the bursting radius of a single round. 
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The overall objective of the experiment is to measure the effectiveness of NSFS 

within the context of each scenario.  Carefully designing three or four COA’s in each 

scenario helps to isolate the effect being measured.  Tables 2.3 and 2.4 below show an 

overview of the COA’s and the factors that are varied or changed for each COA. 

COA (same for each Scenario) FACTORS 
A B C D 

Field Artillery 3 0 6 3 
Naval Ships 0 3 0 3 

Table 2.3:  COA Overview 
 

IBCT FCS-OF Parameter 
FA NSFS FA NSFS 

Number Guns 6 2 4 2 
Rounds per Ship/Battery 2520 2400 2520 2400 
Range (1000’s meters) 30 112 45 162 
Munition Burst Radius 50 75 50 75 

PER 35 100 1 10 
PED 2 2 1 2 

Max Rate of Fire 8 24 12 24 
Acquisition Time Distribution Normal Normal Normal Normal 

Mean Acquisition Time 4.0 5.0 2.0 2.5 
Acquisition Std Deviation 0.75 1.0 0.25 0.5 
Firing Time Distribution Normal Normal Normal Normal 

Mean Firing Time 1.0 0.5 0.25 0.5 
Firing Time Std Deviation 0.2 0.1 0.05 0.1 

Table 2.4:  Hardware Parameter Overview 

1. Organic Army Fire Support Only 

This COA is the base- line model for the effectiveness of Army indirect fires.  It 

involves running the simulation with only one organic Field Artillery battalion in direct 

support of a maneuver brigade. 
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(a) IBCT 

The AO properties
X distribution = Uniform(0,24)
Y distribution = Exponential(50)
Arrival distribution = Exponential(2.5)

Shooter properties
  meanProjectileVelocity = 70000 m/min
  Paladin Battery:
    acquireServiceDistribution = Normal
    meanAcquireInterservice = 4.0
    sigmaAcquire = 0.75
    firingServiceDistribution = Normal
    meanFiringInterservice  = 1.0
    sigmaFiring = 0.2
     # in rounds per minute
    maxRateOfFire = 8
    thePER = 35
    thePED = 2
    numberRounds = 2520
    shooterRange = 30000
    burstRadius = 50
    numberGuns = 6
  Weights to determine the “best” shooter
    range = 0.125
    thePER = 0.125
    numberRounds = .5
    FieldArtillery = 0.25
    NSFS = 0.00

# Run execute properties
stopEvent = TargetArrival
stopEventCount = 425

(24,70)

(0,0)

(FLOT)40

(6,30) (18,30)(12,30
)

 
Figure 2.8:  IBCT COA 1A 
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(b) FCS 

The AO properties
X distribution = Uniform(0,50)
Y distribution = Exponential(90)
Arrival distribution = Exponential(2.5)

Shooter properties
  meanProjectileVelocity = 100000 m/min
  Crusader Battery:
    acquireServiceDistribution = Normal
    meanAcquireInterservice = 2.0
    sigmaAcquire = 0.25
    firingServiceDistribution = Normal
    meanFiringInterservice  = 0.25
    sigmaFiring = 0.05
     # in rounds per minute
    maxRateOfFire = 12
    thePER = 1
    thePED = 1
    numberRounds = 2520
    shooterRange = 45000
    burstRadius = 50
    numberGuns = 4
  Weights to determine the “best” shooter
    range = 0.125
    thePER = 0.125
    numberRounds = .5
    FieldArtillery = 0.25
    NSFS = 0.00

# Run execute properties
stopEvent = TargetArrival
stopEventCount = 425

(50,120)

(0,0)

(FLOT)80

(12.5,70) (37.5,70)(25,70
)

 
Figure 2.9:  FCS COA 2A 

2. NSFS Only 

This COA serves as a base- line model for the effectiveness of indirect fires 

provided by naval assets.  It involves running the simulation with the NSFS fire-power 

equivalent of one Army field artillery battalion in direct support of a maneuver brigade. 
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(a) IBCT 

(24,70)

(0,0)

(FLOT)40

(6,-40) (12,-40) (18,-40)

The AO properties
X distribution = Uniform(0,24)
Y distribution = Exponential(50)
Arrival distribution = Exponential(2.5)

Shooter properties
  meanProjectileVelocity = 70000 m/min
  DDG 51:
    acquireServiceDistribution = Normal
    meanAcquireInterservice = 5.0
    sigmaAcquire = 1.0
    firingServiceDistribution = Normal
    meanFiringInterservice  = 0.5
    sigmaFiring = 0.1
     # in rounds per minute
    maxRateOfFire = 24
    thePER = 100
    thePED = 2
    numberRounds = 2400
    shooterRange = 112000
    burstRadius = 75
    numberGuns = 2
  Weights to determine the “best” shooter
    range = 0.125
    thePER = 0.125
    numberRounds = .5
    FieldArtillery = 0.25
    NSFS = 0.00

# Run execute properties
stopEvent = TargetArrival
stopEventCount = 425

 
Figure 2.10:  IBCT COA 1B 
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(b) FCS 

(50,120)

(0,0)

(FLOT)80

(12.5,-40) (25,-40) (37.5,-40)

The AO properties
X distribution = Uniform(0,50)
Y distribution = Exponential(90)
Arrival distribution = Exponential(2.5)

Shooter properties
  meanProjectileVelocity = 100000 m/min
  DD21:
    acquireServiceDistribution = Normal
    meanAcquireInterservice = 2.5
    sigmaAcquire = 0.5
    firingServiceDistribution = Normal
    meanFiringInterservice  = 0.5
    sigmaFiring = 0.1
     # in rounds per minute
    maxRateOfFire = 24
    thePER = 10
    thePED = 2
    numberRounds = 2400
    shooterRange = 162000
    burstRadius = 50
    numberGuns = 2
  Weights to determine the “best” shooter
    range = 0.125
    thePER = 0.125
    numberRounds = .5
    FieldArtillery = 0.25
    NSFS = 0.00

# Run execute properties
stopEvent = TargetArrival
stopEventCount = 425

 
Figure 2.11:  FCS COA 2B 

3. Organic Army Fire Support with Reinforcing Army Fires 

This COA involves adding one field artillery battalion to the base-line organic fire 

support model. 
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(a) IBCT 

The AO properties
X distribution = Uniform(0,24)
Y distribution = Exponential(50)
Arrival distribution = Exponential(2.5)

Shooter properties
  meanProjectileVelocity = 70000 m/min
  Paladin Battery: See above
  Weights to determine the “best” shooter
    range = 0.125
    thePER = 0.125
    numberRounds = .5
    FieldArtillery = 0.25
    NSFS = 0.00

# Run execute properties
stopEvent = TargetArrival
stopEventCount = 425

(24,70)

(0,0)

(FLOT)40

(3.4,30)

(20.6,30)

(10.3,30)

(6.9,30)

(17.2,30)

(13.7,30)

 
Figure 2.12:  IBCT COA 1C 

(c) FCS 

(50,120)

(0,0)

(FLOT)80

(7.1,70)

(42.8,70)

(21.4,70)

(14.3,70)

(35.7,70)

(28.6,70)

The AO properties
X distribution = Uniform(0,50)
Y distribution = Exponential(90)
Arrival distribution = Exponential(2.5)

Shooter properties
  meanProjectileVelocity = 100000 m/min
  Crusader Battery: See above
  Weights to determine the “best” shooter
    range = 0.125
    thePER = 0.125
    numberRounds = .5
    FieldArtillery = 0.25
    NSFS = 0.00

# Run execute properties
stopEvent = TargetArrival
stopEventCount = 425

 
Figure 2.13:  FCS COA 2C 

4. Organic Army Fire Support with Reinforcing Naval Fires 

This COA involves adding the NSFS fire-power equivalent of one field artillery 

battalion to the base- line organic fire support model. 
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(a) IBCT 

(24,70)

(0,0)

(FLOT)40

(6,30) (18,30)(12,30
)

(6,-40) (12,-40) (18,-40)

The AO properties
X distribution = Uniform(0,24)
Y distribution = Exponential(50)
Arrival distribution = Exponential(2.5)

Shooter properties
  meanProjectileVelocity = 70000 m/min
  Paladin Battery:  See above
  DDG 51: See above
  Weights to determine the “best” shooter
    range = 0.125
    thePER = 0.125
    numberRounds = .5
    FieldArtillery = 0.25
    NSFS = 0.00

# Run execute properties
stopEvent = TargetArrival
stopEventCount = 425

 
Figure 2.14:  IBCT COA 1D 
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(b) FCS 

The AO properties
X distribution = Uniform(0,50)
Y distribution = Exponential(90)
Arrival distribution = Exponential(2.5)

Shooter properties
  meanProjectileVelocity = 100000 m/min
  Crusader Battery: See above
  DD21: See above
  Weights to determine the “best” shooter
    range = 0.125
    thePER = 0.125
    numberRounds = .5
    FieldArtillery = 0.25
    NSFS = 0.00

# Run execute properties
stopEvent = TargetArrival
stopEventCount = 425

(50,120)

(0,0)

(FLOT)80

(12.5,70) (37.5,70)(25,70
)

(12.5,-40) (25,-40) (37.5,-40)  
Figure 2.15:  FCS COA 2D 

G. CONFIRMING THE ACCURACY OF THE MODEL 

The accuracy of this simulation was confirmed entirely by the author.  The 

process used was an iterative approach that included many ad-hoc techniques. 

1. Input 

(a) Weapons Characteristics 

The data that were used for the individual weapons characteristics came 

from published sources on the individual weapons.  Data that were not accessible, such as 

probable errors in range and acquisition times were “best guess” data that made sense.  

The overall data set used for each weapon is not 100% accurate, but it is fairly close to 

the actual data and is a suitable substitute to demonstrate the effectiveness of the FSST. 
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(b) Area of Operations and Battlefield 

The area of operations consists of the size of the area and distribution of 

targets and target types.  The parameters regarding the area of operations were estimated 

for each of the two scenarios from the current doctrinal battle space of an Army brigade.  

The estimate accounts for the role of the future IBCT and FCS brigade sized units. 

The parameters for the distribution of targets are exponential through the 

depth and uniform across the breadth of the battle-space.  The uniform distribution along 

the breadth of the battle-space models a brigade that fights along a front with the enemy 

attacking uniformly along that front.  The exponential distribution models a higher 

likelihood of detecting targets towards the front of the battle-space, while accounting for 

enemy units that evade front- line defenses and are detected deeper within the unit’s 

battle-space.  The actual mean for the exponential distribution was derived by 

experimenting with several until the results made sense to the author. 

Additional parameters for the model dictate how likely an enemy is to flee 

if not successfully engaged, the miss distance for a round to be considered errant, and the 

probability of an errant round causing collateral damage.  All parameters used for the 

area of operations and the battlefield are shown below in Table 2.5. 
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Parameter IBCT FCS 
Box: width x depth (km) 24 X 70 50 X 120 
Distribution of Targets 

along width (front) 
Uniform Uniform 

Distribution of Targets 
along depth Exponential (mean = 50) Exponential (mean = 80) 

Arrival Intervals (min) Exponential (mean = 2.5) Exponential (mean = 2.5) 
Flee Probability 0.9 0.9 

Miss Distance for Errant 
Round 

400 400 

Probability of Collateral 
Damage by Errant Round 0.01 0.01 

Table 2.5:  Area of Operations and Battlefield Parameters 

The parameters that determine the percentage of enemy units that are 

mechanized or light and the percentage of missions that are destroy, neutralize, and 

suppress were selected based on the experiences of the author.  Although they do not 

represent a validated Army scenario, they provide the necessary information to 

demonstrate and test the FSST.  They were depicted earlier in Tables 2.1 and 2.2. 

(c) Attack Guidance 

The attack guidance parameters dictate the number of munitions to fire at 

a specific target type.  They were selected based on the author’s experience and are 

shown below in Table 2.6 along with the parameters for a successful engagement. 

(d) Success Parameters 

These parameters determine the number of rounds that must score a hit on 

the target to inflict the damage necessary for a successful mission.  A successful “hit” for 

a destroy or neutralize mission occurs when the round lands less than one burst radius 

away from the target.  A successful “hit” for a suppression mission is when the round 

lands less than two burst radii away from the target.  These parameters were selected 

based on the experience and intuitions of the author. 
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Engagement Criterion (rds) Target/Mission Type 
IBCT FCS 

Success Criterion 
(hits) 

Armor 
Destroy 36 18 18 

Neutralize 24 12 12 
Suppress 3 3 1 

Infantry in the Open 
Destroy 6 3 3 

Neutralize 3 3 2 
Suppress 3 3 1 

Infantry Dug In 
Destroy 24 6 6 

Neutralize 9 4 4 
Suppress 3 3 1 

Armored Personnel Carrier 

Destroy 24 12 12 
Neutralize 18 9 9 
Suppress 3 3 1 

Light Skinned Vehicle 
Destroy 18 9 9 

Neutralize 12 6 6 
Suppress 3 3 1 

Table 2.6:  Target Engagement and Success Criterion 

2. Output 

The accuracy of  the output from the model was checked in three separate ways 

throughout its development.  They are discussed in detail in the following paragraphs. 

(a) Common-Sense 

At each stage in the development of the simulation the output was checked 

to ensure it made sense based on the input parameters.  An example would be when 

determining the average time that it took for missions to be processed.  A negative 

number would not make sense.  That indicated a problem in the coding or the logic.  

Although not an entirely scientific approach, this method ensured that the answers made 

sense. 
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(b) Sequential  

The sequential method pertains to checking a portion of the simulation as 

it is being developed using “canned” and oversimplified inputs.  By checking each class 

against the desired output the simulation was verified in the most basic case.  

As the simulation grew and more and more Java classes became 

interconnected, the actual answers to the output were no longer known.  The experiences 

from repeatedly testing and running the simulation gave the author the insight needed to 

informally verify the output as the simulation became more and more complex.  In this 

case the output was tested and verified in the same manner, except that instead of 

comparing the answer to a known solution it was simply checked to see if it made sense.  

For example, suppose the simulation consisted of 15 classes that seemed to run correctly.  

If another class or an enhancement of an existing class were being added that should 

refine the simulation, it would be run in the generic case where the refinement should 

make absolutely no difference.  If that worked, the parameters would be adjusted to see if 

the enhancement did what it was intended to do.  If it did, it was considered to function 

correctly. 

(c) Parameterization 

Varying the inputs to the model should make certain things occur.  For 

instance, by increasing the range of a weapon system, the number of rejected missions 

should decrease.  This type of verification was done for virtually all of the parameters.  It 

is worth noting that in some cases what is expected and what actually occurs are not the 

same.  This did not necessarily indicate that the simulation was not running correctly or 

capturing the effects of those parameters correctly.  Instances where parameterized input 
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did not yield outputs that made sense were investigated and corrected if needed.  If it was 

determined that the particular instance actually was modeled correctly, the author 

generally found that the suspect output was the result of another parameter or modeling 

decision.  For instance, as stated above increased range should result in less missions 

being rejected.  If it did not, it might not mean the model is faulty.  In one particular 

instance this modification resulted in a specific shooter running out of ammunition very 

early and not being able to cover his area of the battle-space.  This resulted in an increase 

in the number of missions rejected, which does make sense.  These anomalies provided 

insight that was unknown to the author earlier. 
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III. ANALYSIS OF SIMULATION OUTPUT 

A. OVERVIEW 

Before analyzing the output, a review of the problem is in order.  For the purposes 

of this paper, NSFS is artillery provided by naval platforms.  Available data on naval and 

Army artillery indicate the strengths of naval platforms with respect to Army platforms 

are in extended range and rapid rates of fire.  Inherent weaknesses are in the areas of 

probable error in range and deflection, time for coordination of fires, and time of flight 

due to stationing of naval platforms at least 40 kilometers from shore.  Based on this 

information, the objective of this thesis is to determine the effectiveness of NSFS to the 

Army at brigade level and below in a littoral campaign.  Stated another way, do the 

strengths of naval platforms outweigh the inherent weaknesses of those platforms for the 

purposes of providing fire support for Army units at brigade level? 

The focus of the analysis of the data was to determine the effectiveness of NSFS 

to the Army brigade commander.  Multi-attribute utility theory (MAUT) was used to 

determine the utility of a particular COA within each scenario.  Using the MAUT 

procedure, the output from the simulation can determine the utility of each COA relative 

to the other COA’s in that particular scenario.  Effectiveness of NSFS can be measured 

by comparing COA’s with and without NSFS. 

By replicating each course of action, the simulation can produce confidence 

intervals on the utility of each COA.  These data are useful because they give the user an 

idea of the robustness of a specific COA and allow the analyst to determine whether there 

is a significant difference in the utility between competing COA’s.  Fifty replications 

were made for each COA in order to get a range of output values.  This range of output 
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values was needed to compare the COA’s using the analysis of variance techniques 

discussed later. 

B. DESIGN OF THE EXPERIMENT 

This experiment was designed to measure the effectiveness of NSFS using a 

common sense approach.  The objective was to create and execute a design that was 

simple and could be easily understood by the end user, a military officer unschooled in 

operations research techniques.  Because of this restriction, the design consisted of a 

relatively simple simulation program written in Java that provided easily interpreted 

output.  The intent of the model was not to simulate every aspect of the indirect fire fight, 

but to simulate the more important aspects that are needed to determine the effectiveness 

of NSFS.  The MOE’s from the previous chapter determined the output needed for the 

simulation and the level of complexity with which to simulate the indirect fire battle. 

1. Experiment 

The experiment consisted of four different COA’s or levels for each scenario, 

each with seven MOE’s.  Each of these COA’s was replicated 50 times, for a total of 400 

simulation runs producing a total of 2800 individual pieces of data.  The data were 

collated and processed using the MAUT methodology weighting each MOE equally.  

This produced 50 sets of finalized output in the form of utility for each COA, or 200 

separate bits of numerical output each of which was linked to a specific COA for each 

scenario.  This data served as the baseline case to measure the utility of each COA.  The 

experiment is depicted below in Table 3.1. 
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Replications  
COA IBCT FCS 

Army Only 50 50 
Navy Only 50 50 

Army w/ Reinforcing Army 50 50 
Army w/ Reinforcing Navy 50 50 

TOTAL 200 200 
Table 3.1:  Experimental Design 

2. Data Analysis 

Once the experiments were complete, a cursory look at the data was done for two 

reasons – to see if the output made sense (verification) and to see if any broad insight 

could be gained from it. 

(a) Verification 

The mean values for each of the MOE’s for each COA in each Scenario 

are shown below in Table 3.2. 

FMT NAS PF TPS PS CD CA COA 
IBCT 

11.1487 1.3174 0.7528 0.7071 0.9412 0.0000 0.8462 A 
75.6035 0.4644 0.9956 0.3156 0.3170 3.2400 1.0000 B 
7.3585 4.3069 0.7535 0.7098 0.9427 0.0000 0.8534 C 
10.3692 3.5583 0.9976 0.7473 0.7491 1.7800 1.0000 D 

FCS 
3.28651 2.12820 0.78983 0.54991 0.69632 0.0000 0.7414 A 
10.1904 1.22583 0.9976 0.19579 0.19626 3.6400 1.0000 B 
2.95028 5.11194 0.8024 0.54684 0.68154 0.0000 0.7478 C 
3.62385 4.77277 0.97967 0.58253 0.59463 1.0200 1.0000 D 

Table 3.2:  Mean MOE Performance 

COA A consists of three batteries of Army artillery, COA B consists of three ships, COA 

C consists of six batteries, and COA D consists of three batteries and three ships.  As 

expected, the average fire mission times (FMT) declined and the number of available 

shooters (NAS) increased as more assets were added to the base case.  Due to the 

extended range of Naval gunfire, it was expected that the area of the battlefield covered 
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(CA) and the percentage of missions fired (PF) for COA’s with ships would be higher, 

and they are.  Additionally, due to a combination of the lower accuracy of Naval guns 

and the extended ranges that Naval missions incurred, the number of mission causing 

collateral damage (CD) should have been higher for COA’s with ships as well, and it 

was.  Predictions for the success rate for missions fired (PS) and the total success rate for 

all arriving targets (TPS) are difficult to predict, but the expectation is that adding Naval 

gunfire to the equation would increase TPS due to the ability to fire targets, but PS would 

decrease due to the inaccuracy of the added firepower.  Overall the data seems to indicate 

that the simulation was functioning correctly and yielding data that made sense. 

(b) Insight 

(1) Average Fire Mission Times.  Due to the extended 

range of the missions fired by Naval gunfire, the fire mission times were severely 

degraded for COA’s with NSFS.  By adjusting the parameters for which asset to chose 

for firing missions, however, this can be mitigated.  The objective is to improve the 

overall effectiveness of indirect fires.  By adjusting the weighting of the variables that 

decide who fires what mission – range, PER, number of available rounds, and whether 

the asset is field artillery or NSFS, the simulation can use NSFS for those missions that it 

is most effective at engaging. 

(2) Collateral Damage.  COA’s that included NSFS had 

a significantly higher incidence of collateral damage.  Although not too surprising, it is 

important to keep in mind due to the sensitive nature of the the missions the US has been 

engaged in lately.  To mitigate this, it is necessary to ensure that NSFS is used for 

missions that have low probability of such occurrences.  This is possible on a tactical 
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level, but may be impractical when planning large-scale operations that synchronized all 

available indirect fires. 

(3) Coverage Area.  The coverage areas of COA’s with 

NSFS was significantly higher than those without.  The significance of this event is that it 

shows that NSFS can cover areas that traditional Army artillery cannot.  In the scenarios 

created for this thesis, those areas are the rear and deep areas of the operation.  Since 

Army artillery is traditionally pushed forward to support engaged units, units are not 

positioned to support rear echelon missions.  Those missions are generally fired as targets 

of opportunity when they are in range.  NSFS can cover that dead space, contributing to 

the overall success of the mission.  Due to the limited range of Army artillery, it can 

generally not engage the enemy deep in the battlefield.  NSFS can be used to engage 

targets before they enter Army artillery range to help shape the future battle for enaged 

units.  These shaping missions can disrupt the enemy’s assault, canalize him into 

prepared kill zones, and attrite him before he enters the close fight. 

3. Analysis of Variance (ANOVA) 

At first glance it would appear that a two-factor ANOVA test should be used to 

analyze the effects of COA and Scenario on the output.  A closer look at the experiment 

however, shows that there are significant differences between like COA’s in different 

scenarios.  The locations of the assets, the size of the area of operations, and the 

specifications of the assets all differ immensely between scenarios.  For these reasons, the 

author opted to perform two separate one-factor ANOVA tests to test the null hypothesis 

(Ho) that the treatment (COA) means were identical, or that total utility is not affected by 

COA selection (Devore, 390-391).  For both scenarios, the null hypothesis is rejected, 
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indicating that there was a statistically significant difference between at least one of the 

treatments and the remainder of the treatments in each scenario. 

To determine which, if any, of the COA’s were different from one another, 

multiple comparisons was used.  The question that remained to be answered was to 

decide for each i and j whether µi = µj.  Tukey’s procedure, the T Method, was used to 

produce a collection of simultaneous confidence intervals about the true value of all 

differences µi and µj.  If the confidence interval for a specific difference contained the 

value zero, then those two samples were deemed equal at level α of the experiment.  For 

this experiment, α was set at 0.05 (Devore, 401-402). 

This analysis was performed using SPLUS and indicated that the differences 

between all treatments were significant.  For both scenarios the COA’s containing Army 

field artillery with reinforcing Naval gunfire were superior.  The output for the T Method 

is shown below in Tables 3.3 and 3.4. 

 Estimate Std.Error Lower Bound Upper Bound Includes Zero 
1A-1B 0.846 0.0393 0.744 0.948 NO 
1A-1C -0.799 0.0393 -0.901 -0.697 NO 
1A-1D -1.970 0.0393 -2.070 -1.860 NO 
1B-1C -1.640 0.0393 -1.750 -1.540 NO 
1B-1D -2.810 0.0393 -2.910 -2.710 NO 
1C-1D -1.170 0.0393 -1.270 -1.060 NO 

Table 3.3:  IBCT COA Comparison using T Method 
 
 Estimate Std.Error Lower Bound Upper Bound Includes Zero 

2A-2B 1.090 0.042 0.983 1.200 NO 
2A-2C -0.782 0.042 -0.891 -0.673 NO 
2A-2D -2.080 0.042 -2.190 -1.970 NO 
2B-2C -1.870 0.042 -1.980 -1.770 NO 
2B-2D -3.170 0.042 -3.280 -3.060 NO 
2C-2D -1.300 0.042 -1.410 -1.190 NO 

Table 3.4:  FCS COA Comparison using T Method 
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The boxplots of the utility for the different COA’s are shown below in Figures 3.1 

and 3.2.  They show the performance of each COA by depicting the median as a stripe.  

The box contains both the upper and lower quartiles.  The whiskers of the boxplot are 

depicted by the brackets which contain the lower and upper bounds of the data defined as 

1.5*(Inter-Quartile range).  Outliers are shown as stripes outside of the bracketed data.  

They are a useful graphical depiction of the performance of the different COA’s that give 

the user an easy to interpret depiction of the data. 
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Boxplot of Utility of IBCT COAs with all Weights Equal

 
Figure 3.1:  Boxplot of IBCT COA’s 
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Boxplot of Utility of FCS COAs with all Weights Equal

 
Figure 3.2:  Boxplot of FCS COA’s 

The final output (the T Method comparison tables and the boxplots) from the 

experiment meets the requirements of simplicity.  Most people understand the theory 

behind confidence intervals and can comprehend the basic idea behind Tukey’s 

comparisons of µi and µj.  The boxplots, although somewhat simplistic, provide a simple, 

graphical depiction of each COA’s median utility and range. 

4. Sensitivity to Weights 

For this particular experiment, all MOE’s were weighted equally.  The actual 

weighting of each MOE is best left to the professional judgement of the leaders and staffs 

involved in the conflict.  Equal weighting results in each MOE having about 14% of the 

total weight.  To demonstrate the sensitivity that the analysis has to the weighting of each 

of the MOE’s, one MOE was given 50% of the total weight, resulting in each remaining 

MOE having roughly 8.33% of the remaining weight.  This procedure was replicated 
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seven times (once per MOE).  The boxplots for each of those branches from the base case 

is shown below in Figures 3.3 and 3.4. 
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Figure 3.3:  Boxplots of Different Weightings for IBCT 
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Figure 3.4:  Boxplots of Different Weightings for FCS 



65 

These boxplots show how the utility for the COA’s in the IBCT and FCS 

scenarios are affected by changes in the weights of the various MOE’s.  This output is 

helpful because it gives the user an idea of the sensitivity that the output has to the utility.  

In addition to the medians of the utility shifting up and down, changing the weights 

affects the spread too. 

Looking at a specific boxplot – IBCT with Collateral Damage weighted at 50% 

we notice that the COA 1C and 1D (organic Army fires with reinforcing Army and Navy 

fires) both appear to have similar means.  In fact, the T Method confirms that there is no 

statistical difference in the means for those two treatments as shown below in Table 3.5.  

In this specific COA using the weights listed above, the commander has more to consider 

than he might if the utility of the COA’s were significantly different, as in the base case.  

Although both COA’s are similar, the variances of the overall utility of each COA are 

much different and could be an important factor in his decision. 

 Estimate Std.Error Lower Bound Upper Bound Includes Zero 
1C-1D 0.881 1.64 -3.36 5.12 YES 
Table 3.5:  Comparison of IBCT COA 1C and 1D (Collateral Damage = 50%) 

Changes in the weighting scheme for a single MOE result in linear changes to the 

utility.  However, the effects of higher order changes (changing the weights of two or 

more MOE’s simultaneously) have not been fully explored.  It is suspected that higher 

order changes will result in monotonistic changes in the overall utility (e.g. if changing 

the weight of MOE’s one and two individually shift the utility in favor of a particular 

COA, then increasing the weight of both simultaneously should shift the utility in favor 

of the same COA).  Shown below is a boxplot of the effect of changing the weights of 

collateral damage and fire mission times, both of which favor COA 1D, to 80% of the 

total utility (40% each) for the IBCT scenario.  The remaining MOE’s are now worth a 
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mere 4% of the total utility.  The boxplot of the results shown below in Figure 3.5 now 

seems to indicate that COA 1D is the preferred COA.  The T Method results shown 

below in Table 3.6 indicate that there is no significant difference between COA’s 1A and 

1D using this weighting scheme.  However, the COA with the most utility is COA 1C, 

which is evident by the fact that the confidence interval for 1A – 1C is negative, and 1C – 

1D is positive. 
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Figure 3.5:  Boxplot of IBCT Utility 

 

 Estimate Std.Error Lower Bound Upper Bound Includes Zero 
1A-1B 37.70 1.42 33.90 41.400 NO 
1A-1C -4.23 1.42 -8.02 -0.448 NO 
1A-1D 1.08 1.42 -2.70 4.860 YES 
1B-1C -41.90 1.42 -45.70 -38.100 NO 
1B-1D -36.60 1.42 -40.40 -32.800 NO 
1C-1D 5.31 1.42 1.53 9.100 NO 

Table 3.6:  Comparison of IBCT COA’s (Fire Mission Time = 40%, Collateral Damage = 40%) 
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This analysis does not produce specific answers as to what the effectiveness of 

NSFS is.  Rather it shows that the answer is a function of the inputs to the COA’s and 

scenarios and the weights attributed to each MOE.  If the commander weighted all 

MOE’s equally and relied entirely on the output from this experiment, the logical choice 

for both the IBCT and FCS scenarios would be to use the organic Army Artillery 

Battalion in direct support reinforced by Naval gunfire.  Different scenarios will certainly 

result in different results. 

C. LIMITATIONS OF THE ANALYSIS 

1. Input and Output 

This analysis is built upon a number of significant assumptions, the first of which 

is that the simulation accurately models and measures the MOE’s.  Additionally, as with 

any simulation or analysis, the input variables dictate the output.  Several assumptions 

and “best guesses” were made to get reasonable input variables.  Some of the input 

variables, such as number of rounds required to destroy, neutralize, or suppress enemy 

armor are classified information.  Others, such as probable errors in range and deflection 

for weapon systems were estimated for several reasons.  First, since they vary with range 

and propellant type and amount used, they are average measures.  And secondly, since 

the actual tables with the actual data are not available to the general public, best guess 

data was used. 

2. Decision Aid 

The FSST and the analysis presented here are meant as a decision aid.  They are 

not intended to replace decision-makers or leaders.  Those individuals are charged with 

the ultimate responsibility for what occurs as a result of their decisions.  Their experience 
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coupled with the analysis presented here will help guide them to make the best decision 

with respect to the circumstances. 

Due to the nature of this model, it does not measure the intangible aspects 

associated with the effectiveness of NSFS.  Although we purport to measure reliability, 

flexibility, and lethality, those measurements are a function of the definitions presented in 

this thesis and cannot replace reality.  They simply provide insight into what 

measurements of those topics might actually be. 
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IV. CONCLUSIONS 
A. RESULTS 

The results of this thesis indicate that NSFS can be effective in providing support 

for Army units at brigade level in a littoral campaign for the IBCT and the FCS scenarios.  

The measures of effectiveness used for this analysis were fire mission times, available 

firing platforms, percentage of missions fired, percentage of successful missions based on 

all arriving targets, percentage of successful missions based on missions fired, number of 

rounds that caused collateral damage, and the percentage of the area of operations 

covered.  COA’s were developed consisting of different artillery task organizations of 

Army and Navy artillery for each scenario.  Using the Fire Support Simulation Tool 

developed for this thesis, each COA was simulated 50 times to get values for the MOE’s. 

Using multi-attribute utility theory each MOE for each COA replication within a 

particular scenario was given a utility rating based on the actual value of that MOE/COA 

combination compared with other MOE/COA combinations in the scenario.  The final 

utility for a specific COA replication in a scenario was determined by weighting and then 

combining the utility of the MOE’s for each COA replication in a particular scenario.  

Single factor ANOVA and Tukey’s procedure for multiple comparisons were used to 

determine whether there was a statistically significant difference among the COA’s. 

When using equal weights for all of the MOE’s, the best COA for both scenarios 

was the COA that consisted of a mixture of Army and Navy artillery.  Based entirely on 

the weapon systems specifications used, this result indicates that there could be a scenario 

for the IBCT and FCS where NSFS adds more utility and is effective as a fire support 

weapon in a littoral campaign. 
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B. ISSUES 

This analysis revealed that there is merit to the use of NSFS in place of Army 

artillery for reinforcing fires in the littorals.  However, nothing can truly replace the 

feeling of ownership that a unit commander feels by having supporting elements on the 

ground with him and within arm’s reach.  Most if not all leaders feel very comfortable 

with the capabilities and limitations of those assets they are most familiar with.  Joint 

training exercises between Naval and Army units are extremely rare.  Lack of that joint 

training and personal prejudices build distrust, which may prove an insurmountable 

obstacle if not corrected.   

Nothing speaks more highly of dedication to success of a mission than having a 

personal stake in the outcome of the mission.  Most soldiers stake their lives on the 

successful completion of their missions.  If assets providing support in the form of naval 

gunfire do not have that same stake, Army commanders feel uncomfortable. 

The results of this analysis assume the relatively efficient use of available assets 

to accomplish all fire missions.  If assets such as naval gunfire can be called away at a 

moment’s notice, their reliability to the commander on the ground becomes suspect.  This 

leads to inefficient use of the asset.  Basically, the Army commander will try to get as 

much as he can out of that asset before it gets taken away.  This type of misuse will 

almost certainly create prejudice and mistrust among the Navy towards the Army. 

These issues must be addressed before naval gunfire can be integrated seamlessly 

into Army operations now or in the future.  Digital synchronization, future technologies, 

and memorandums of agreement will help, but alone they will not suffice.  Soldiers know 
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that the soldier across the street will be ready because they see him and her working and 

training every day.  These issues of mistrust must be worked out on the ground, 

commander to commander, sergeant to petty officer, and soldier to sailor. 

C. RECOMMENDATIONS FOR FURTHER RESEARCH 

Research on the effectiveness of NSFS to Army commanders has provided one 

perspective and one answer to an extremely complex and ever-changing problem.  As 

with much significant research, more questions than answers resulted, which is the basis 

for the following recommendations for further study of this problem. 

1. Further Development of the FSST 

For the purposes of this thesis the FSST was adequate.  Further development 

could provide users with a higher fidelity and a more versatile tool.  The current version 

of the FSST does not have a graphical user interface (GUI) and is limited in the 

distributions that can be used to determine the locations of arriving enemy targets.  It also 

does not account for different times of flight for different weapon systems and different 

ranges, and accounts for only one type of ammunition.  These are just a few areas that 

could use improvement, and will be discussed in further detail below 

(a) Graphical User Interface and Target Distribution Model 

(1) GUI.  A GUI could be developed to simplify the 

development of scenarios.  The GUI could prompt the user for all needed information and 

could have built in error checking mechanisms to prevent the user from entering bad data.  

This type of enhancement would make the Java underpinnings of the simulation 

transparent to the user and would make the tool more likely to be used for 

experimentation and analysis. 
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(2) Develop Unique Distributions to Be Used With the GUI 

- Bivariate Triangular.  The current version of the FSST uses two parameter 

distributions for the breadth of the battlefield and one parameter distributions for the 

depth of the battlefield.  This is due to the fact that the FSST was designed for a fairly 

specific purpose.  One of the strengths of Java is that it is allows for easily extending the 

capabilities and flexibility of any program.  Making the FSST generic enough to accept a 

broader set of possible distributions for the depth and breadth of the battlefield would be 

relatively simple and would give the user a much more powerful tool.  To allow for the 

analysis of future scenarios that might include a strongpoint-type position deep in enemy 

territory, the development of distributions that make the probability of encountering 

enemy targets at edges of the FLOT higher than in the center would be appropriate (see 

Figure 4.1). 

 
Figure 4.1:  Unique Dual Triangular Distribution 

Using this distribution bivariately would create a distribution that could model a 

strongpoint-type defense.  The objective is to create a distribution that looks like an 

inverted, four-sided pyramid (Figure 4.2).  The bivariate version of the dual triangular 

distribution would probably look more like a tarp suspended by all four corners and 

pulled taut in the center that sags somewhat in the center of each side. 
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Figure 4.2:  Inverted Pyramid 

Shown below in Figure 4.3 is what an example of this type of bivariate 

distribution might look like, where the probability of encountering the enemy is highest 

on the perimeter and lowest at the center. Here we depict an Army unit in a desert-type 

environment near the coast surrounded by enemy units.  The unit has organic fire support, 

but cannot effectively cover his perimeter with them.  NSFS can provide the extra fire 

support needed to cover the entire area of operations.   
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Figure 4.3:  Picture of Density of Targets on the Battlefield.  Dark indicates higher density 

This distribution does not have to be symmetrical.  It is conceivable that a unit 

could be surrounded by enemy units with different characteristics on each side.  In this 

case, these enemy forces might attack the surrounded unit at different rates on each side.  

By adjusting the parameters of the bivariate dual triangular distribution, the user could 

model aggressive units to the left and front attacking in conjunction with less aggressive 

units to the right and rear.  An example of what this might look like is shown below in 

Figure 4.4. 
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Figure 4.4:  Un-symmetrical Bivariate Dual Triangular Distribution 

By incorporating unique distributions such as this and others, we can more 

realistically model a broader array of scenarios.  These distributions should be tied into 

the GUI described earlier to give the user a simple method of picking distributions and 

their parameters. 

- Polar Coordinates.  Another option for developing a model that depicts a 

strongpoint defense would be to model the arrival of targets using polar coordinates.  In 

this case the two variables of angle and radius could generate a bivariate distribution that 

looks like a bowl or a ripple in a pond (see Figure 4.5, radially fleeing target).  The 

randomly chosen polar coordionates that follow the particular bivariate distribution could 

then be converted to Cartesian coordinates for the simulation.  An example of a very 

simple distribution would be one in which the angle was uniform between 0 and 6.28 

radians, and the radius or range were chosen based on a right triangular distribution.  This 

distribution would look like an inverted cone. 
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Figure 4.5:  Sample polar coordinate bivariate distributions (From: Eagle). 

(b) Survivability 

The current version of the FSST discounts the effects of survivability, as 

fire support systems are not attrited in the model.  By accurately accounting for attrition 

from counter-battery fire, mines, enemy actions, and mechanical failure, the FSST could 

be an improved model of the battlefield.  This enhancement would enable the user to 

measure, compare, and analyze the effects of more survivable systems using a relatively 

simple tool.  A possible thesis topic would be an analysis of the effectiveness of different 

howitzer systems for the IBCT and FCS-OF. 

(c) Expand the Types of Ammunition the Simulation Models 

Expanding the family of munitions that the simulation accounts for would 

make the FSST much more complex than it already is, and could make scenario 

development more time consuming (if the user wanted to use more than one type of 

ammunition).  The benefits of this would be that it would allow comparisons between 

different basic loads of munitions to optimize success on the battlefield.  This would also 

allow for more realistic comparisons among artillery systems by accounting for the 

availability of different munitions for different systems.  Overall, this improvement 

would make the simulation more flexible and realistic. 
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(d) Modify Modeling of Time of Flight 

Time of flight is calculated based on the average velocity of projectiles 

regardless of range or delivery system.  To make the simulation more accurate, another 

method of calculating time of flight should be devised.  One possible solution would be 

to take tabularized firing tables for Army and Navy artillery to get the times of flight and 

plot those times based on range for different weapon systems and use regression to 

develop a simple formula to compute times of flight for individual platforms. 

2. Fire Support Optimization Based on Threat 

Mission, enemy, time, terrain, and training make all military campaigns unique.  

Based on these factors, the force structure for a military campaign is determined by 

leaders who generally use intelligence estimates and personal experience as their guide.  

Using the FSST, a student could design an experiment to determine the optimal mix of 

Naval and Army artillery for a particular campaign.  This analysis would provide the 

decision-maker a quantitative basis to aid in the decision-making process. 

This problem can be examined using several different techniques.  One technique 

would be to design a multi- factorial experiment and use FSST to determine the optimal 

strategy by using regression or ANOVA techniques to map response surfaces.  Another 

technique would be to use linear and non- linear optimization techniques to determine the 

optimal solution.  Certainly other techniques exist, yet these are two simple well-

developed procedures that are available. 

3. Cost Analysis of Army Fire Support Systems  

Effectiveness of NSFS in this analysis is based entirely on utility to the Army 

brigade commander.  The brigade commander is not concerned with cost because it does 
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not affect him or his operation directly – generally, if the assets are available, they will be 

made available to him.  However, when developing the Nation’s future force, cost is an 

enormous factor and cannot be discounted. 

An excursion from this thesis would be to optimize future fire support systems 

based on cost.  By using a set of approved Army scenarios for the future, the student 

could design an experiment to determine the utility of different combinations of fire 

support systems throughout the Army and then optimize that force with respect to utility 

and cost.  Put in more simplistic terms, this analysis would be a bang for the buck 

analysis of Army fire support. 

Another possible excursion would be to analyze and optimize utility and cost for a 

specific scenario that took into account cost.  For example, the fire support for a purely 

littoral Army operation could be optimized for utility given a limited budget.  By 

experimenting with different feasible combinations of NSFS and Army artillery, the 

student could optimize the assets provided for that operation for a specific budget.   

D. SUMMARY AND CONCLUSIONS 

The effectiveness of Naval Surface Fire Support is difficult to define and even 

harder to measure.  By using value systems design to define effectiveness of NSFS in a 

hierarchical manner using an objective tree, NSFS effectiveness can be defined 

quantitatively by the lowest sub-objectives on the objective tree.  Those lowest level, 

quantitative sub-objectives are the MOE’s that were used to measure the effectiveness of 

NSFS.  Figure 4.6 shows the condensed objective tree that depicts the main objective, the 

first level objectives, and the lowest level objectives or MOE’s (notice that all other 

intermediate level objectives have been removed). 
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Figure 4.6:  Condensed Objective Tree 

By combining the strengths of Army artillery and naval gunfire, an Army Brigade 

commander can organize a fire support team that is better able to support his missions.  

The task organization of assets used is strongly dependent on the weighting scheme the 

commander adopts for the MOE’s presented earlier.  Although there is evidence 

supporting the use of NSFS in a support of Army operations in the littorals, there are a 

myriad of issues such as training, mistrust, and synchronization that must be addressed to 

make these types of joint campaigns successful.  In the final analysis, it was determine 

that there is strong quantitative and analytical evidence to support the effectiveness of 

NSFS to an Army Brigade commander engaged in a littoral campaign. 
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APPENDIX 1: IBCT RAW DATA 

FMT NAS PF TPS PS CD CA COA 
10.1155 1.3809 0.7412 0.6991 0.9455 0 0.8462 1A 
10.0987 1.3208 0.7529 0.7224 0.9594 0 0.8462 1A 
13.5736 1.2861 0.7576 0.6981 0.9221 0 0.8462 1A 
10.6466 1.2771 0.8047 0.7671 0.9532 0 0.8462 1A 
8.7089 1.3835 0.7553 0.7059 0.9346 0 0.8462 1A 
9.2294 1.3523 0.7553 0.7088 0.9429 0 0.8462 1A 
8.8930 1.5523 0.7247 0.6746 0.9369 0 0.8462 1A 
13.1867 1.2501 0.7647 0.7268 0.9533 0 0.8462 1A 
10.1874 1.4308 0.7365 0.6888 0.9385 0 0.8462 1A 
10.8690 1.2736 0.7576 0.7275 0.9624 0 0.8462 1A 
8.7823 1.4471 0.7388 0.7028 0.9521 0 0.8462 1A 
12.8423 1.2563 0.7882 0.7177 0.9146 0 0.8462 1A 
11.2220 1.3108 0.7459 0.7014 0.9427 0 0.8462 1A 
10.1027 1.2453 0.7529 0.7092 0.9434 0 0.8462 1A 
12.7777 1.2948 0.7647 0.7187 0.9412 0 0.8462 1A 
13.5144 1.2354 0.7529 0.7082 0.9406 0 0.8462 1A 
10.8664 1.3880 0.7788 0.7352 0.9453 0 0.8462 1A 
10.2689 1.4459 0.7459 0.6894 0.9243 0 0.8462 1A 
10.3266 1.4044 0.7341 0.6934 0.9453 0 0.8462 1A 
9.7868 1.4779 0.7412 0.6862 0.9243 0 0.8462 1A 
11.0182 1.2850 0.7435 0.7038 0.9489 0 0.8462 1A 
13.4077 1.2219 0.7694 0.7262 0.9472 0 0.8462 1A 
12.7512 1.1467 0.7929 0.7458 0.9453 0 0.8462 1A 
9.8451 1.3921 0.7553 0.7254 0.9596 0 0.8462 1A 
9.5355 1.4259 0.7553 0.7092 0.9404 0 0.8462 1A 
12.0433 1.2273 0.7459 0.7075 0.9494 0 0.8462 1A 
11.7216 1.3401 0.7294 0.6802 0.9375 0 0.8462 1A 
13.1663 1.1875 0.7412 0.6995 0.9430 0 0.8462 1A 
14.5717 1.2217 0.7459 0.6879 0.9238 0 0.8462 1A 
10.1880 1.3251 0.7576 0.7019 0.9329 0 0.8462 1A 
12.1267 1.2426 0.7318 0.6816 0.9323 0 0.8462 1A 
16.2287 1.2080 0.7882 0.7447 0.9459 0 0.8462 1A 
11.9053 1.2470 0.7506 0.6865 0.9175 0 0.8462 1A 
10.4061 1.2501 0.7600 0.7279 0.9621 0 0.8462 1A 
9.0901 1.2966 0.7388 0.6730 0.9132 0 0.8462 1A 
10.6971 1.3245 0.7600 0.7170 0.9441 0 0.8462 1A 
10.0657 1.3807 0.7482 0.6896 0.9238 0 0.8462 1A 
11.6537 1.3789 0.7294 0.6958 0.9547 0 0.8462 1A 
10.1224 1.2886 0.7529 0.7234 0.9623 0 0.8462 1A 
11.2466 1.3654 0.7459 0.7129 0.9558 0 0.8462 1A 
10.2101 1.2596 0.7576 0.7139 0.9438 0 0.8462 1A 
10.4852 1.4571 0.7459 0.7014 0.9427 0 0.8462 1A 
12.0845 1.3369 0.7176 0.6872 0.9603 0 0.8462 1A 
13.6397 1.2590 0.7576 0.6998 0.9250 0 0.8462 1A 
12.2961 1.2967 0.7482 0.6809 0.9114 0 0.8462 1A 
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FMT NAS PF TPS PS CD CA COA 
10.1355 1.3100 0.7365 0.6919 0.9419 0 0.8462 1A 
9.9158 1.2275 0.7812 0.7494 0.9632 0 0.8462 1A 
10.5636 1.3350 0.7553 0.6833 0.9082 0 0.8462 1A 
11.2183 1.2345 0.7529 0.7176 0.9531 0 0.8462 1A 
9.0979 1.3846 0.7506 0.7085 0.9462 0 0.8462 1A 
52.9676 0.4146 0.9976 0.2864 0.2872 2 1 1B 
80.2095 0.4394 0.9976 0.3554 0.3564 1 1 1B 
78.4474 0.4263 0.9976 0.3102 0.311 4 1 1B 
62.8528 0.5221 0.9976 0.3264 0.3273 5 1 1B 
56.4942 0.4155 0.9976 0.3609 0.3618 4 1 1B 
59.5435 0.4792 0.9976 0.3316 0.3324 3 1 1B 
45.6509 0.5203 0.9388 0.2576 0.2743 2 1 1B 

138.2842 0.4668 0.9976 0.3047 0.3056 4 1 1B 
56.1804 0.4494 0.9976 0.3275 0.3283 2 1 1B 
60.6415 0.4793 0.9976 0.297 0.2978 1 1 1B 
57.9176 0.5018 0.9976 0.3248 0.3256 7 1 1B 
87.6755 0.4578 0.9976 0.3046 0.3054 5 1 1B 
80.3952 0.3371 0.9976 0.3386 0.3395 5 1 1B 
83.4727 0.4538 0.9976 0.3736 0.3746 2 1 1B 
58.8176 0.4889 0.9976 0.3342 0.3351 3 1 1B 
87.2914 0.5395 0.9976 0.3295 0.3305 3 1 1B 
58.3692 0.5467 0.9976 0.313 0.3138 1 1 1B 
61.9579 0.6099 0.9976 0.3272 0.3281 2 1 1B 
63.1433 0.5359 0.9976 0.3298 0.3307 1 1 1B 
71.5462 0.5729 0.9976 0.3036 0.3043 1 1 1B 
79.1065 0.4308 0.9976 0.3397 0.3407 3 1 1B 
84.808 0.4637 0.9976 0.3111 0.312 0 1 1B 
96.7954 0.4777 0.9976 0.32 0.3209 4 1 1B 
71.5192 0.5009 0.9765 0.2974 0.3053 1 1 1B 
85.5592 0.5556 0.9976 0.3246 0.3255 5 1 1B 
82.6135 0.5347 0.9976 0.2693 0.2701 2 1 1B 
71.8495 0.3883 0.9976 0.3054 0.3062 5 1 1B 

110.0748 0.4061 0.9976 0.3246 0.3256 7 1 1B 
84.9032 0.3738 0.9976 0.2964 0.2972 3 1 1B 
62.1142 0.4921 0.9976 0.2834 0.2842 3 1 1B 
87.7569 0.3322 0.9976 0.2912 0.292 4 1 1B 
88.1566 0.3902 0.9976 0.3105 0.3113 2 1 1B 

116.2587 0.5537 0.9976 0.3256 0.3265 2 1 1B 
62.5021 0.4406 0.9976 0.2784 0.2791 5 1 1B 
66.3734 0.355 0.9976 0.2984 0.2992 5 1 1B 
80.6586 0.4661 0.9976 0.3411 0.342 0 1 1B 
52.9527 0.3854 0.9788 0.33 0.3376 7 1 1B 
85.2501 0.5998 0.9976 0.3667 0.3677 3 1 1B 
76.4893 0.4631 0.9976 0.2693 0.2701 3 1 1B 
71.104 0.3795 0.9976 0.2982 0.299 5 1 1B 
90.275 0.4469 0.9976 0.3052 0.306 1 1 1B 
58.6385 0.5545 0.9976 0.3436 0.3445 4 1 1B 
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FMT NAS PF TPS PS CD CA COA 
89.5289 0.3683 0.9976 0.3467 0.3476 2 1 1B 
74.586 0.4158 0.9976 0.3244 0.3253 3 1 1B 
86.7711 0.4184 0.9976 0.3484 0.3493 5 1 1B 
80.6077 0.429 0.9976 0.2479 0.2486 2 1 1B 
72.9093 0.5738 0.9976 0.3103 0.3112 4 1 1B 
69.0219 0.5004 0.9976 0.2857 0.2865 6 1 1B 
82.2343 0.4187 0.9976 0.3433 0.3443 6 1 1B 
56.8961 0.4465 0.9976 0.3051 0.3059 2 1 1B 
6.9691 4.3593 0.7412 0.6981 0.9427 0 0.8534 1C 
7.492 4.3269 0.7529 0.7106 0.9438 0 0.8534 1C 

8.3287 4.2787 0.7576 0.7335 0.9688 0 0.8534 1C 
7.73 4.2723 0.8047 0.76 0.9444 0 0.8534 1C 

7.6254 4.3809 0.7553 0.7241 0.9594 0 0.8534 1C 
7.0711 4.3317 0.7553 0.7028 0.9312 0 0.8534 1C 
7.0417 4.5191 0.7247 0.6824 0.9416 0 0.8534 1C 
7.5678 4.2315 0.7694 0.7417 0.966 0 0.8534 1C 
6.9281 4.4219 0.7365 0.7075 0.9615 0 0.8534 1C 
7.1517 4.2804 0.7576 0.6974 0.9219 0 0.8534 1C 
6.5345 4.4211 0.7435 0.6769 0.9111 0 0.8534 1C 
7.6099 4.2192 0.7882 0.747 0.9489 0 0.8534 1C 
7.3749 4.2793 0.7482 0.7224 0.9654 0 0.8534 1C 
7.692 4.2146 0.7529 0.7059 0.9375 0 0.8534 1C 

8.5518 4.3076 0.7647 0.7176 0.9385 0 0.8534 1C 
7.9956 4.2436 0.7553 0.7153 0.947 0 0.8534 1C 
7.7949 4.3674 0.7788 0.7365 0.9456 0 0.8534 1C 
7.0248 4.4655 0.7459 0.7082 0.9495 0 0.8534 1C 

6.72 4.3994 0.7341 0.7019 0.9553 0 0.8534 1C 
7.5525 4.4536 0.7435 0.7166 0.9623 0 0.8534 1C 
7.1184 4.2987 0.7435 0.7028 0.946 0 0.8534 1C 
7.2369 4.212 0.7694 0.7264 0.9448 0 0.8534 1C 
7.7485 4.1231 0.7929 0.7529 0.9496 0 0.8534 1C 
7.0521 4.3496 0.7553 0.6901 0.913 0 0.8534 1C 
6.8131 4.4426 0.7553 0.7123 0.9438 0 0.8534 1C 
7.6545 4.2388 0.7459 0.695 0.9333 0 0.8534 1C 
7.1541 4.2988 0.7294 0.6912 0.951 0 0.8534 1C 
7.5723 4.138 0.7435 0.6768 0.9088 0 0.8534 1C 
7.4578 4.2239 0.7482 0.7019 0.9373 0 0.8534 1C 
8.022 4.28 0.7576 0.7275 0.9624 0 0.8534 1C 

7.1484 4.2408 0.7318 0.6714 0.9167 0 0.8534 1C 
8.0412 4.1846 0.7882 0.7358 0.9341 0 0.8534 1C 
7.0445 4.2216 0.7529 0.7234 0.9623 0 0.8534 1C 
7.665 4.2701 0.76 0.7153 0.9462 0 0.8534 1C 

6.5345 4.2942 0.7412 0.6856 0.9265 0 0.8534 1C 
6.9408 4.3248 0.76 0.7153 0.9412 0 0.8534 1C 

7.61 4.3651 0.7482 0.7116 0.9525 0 0.8534 1C 
7.3674 4.3905 0.7294 0.6792 0.932 0 0.8534 1C 
6.9693 4.3318 0.7529 0.7075 0.9404 0 0.8534 1C 
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FMT NAS PF TPS PS CD CA COA 
7.5255 4.3723 0.7459 0.6948 0.9308 0 0.8534 1C 
7.0469 4.2602 0.7576 0.7139 0.9438 0 0.8534 1C 
6.7356 4.4528 0.7459 0.7055 0.9489 0 0.8534 1C 
7.1947 4.3431 0.7176 0.6738 0.9406 0 0.8534 1C 
6.7268 4.2482 0.7576 0.7106 0.9379 0 0.8534 1C 
7.3305 4.2973 0.7506 0.6792 0.9057 0 0.8534 1C 
7.1667 4.2633 0.7365 0.6918 0.9393 0 0.8534 1C 
7.6553 4.2047 0.7812 0.7459 0.9548 0 0.8534 1C 
6.7821 4.3192 0.76 0.7167 0.9465 0 0.8534 1C 
8.5899 4.227 0.7553 0.716 0.9472 0 0.8534 1C 
7.2642 4.3526 0.7506 0.7153 0.953 0 0.8534 1C 
9.1293 3.5816 0.9976 0.7316 0.7333 1 1.0000 1D 
10.4000 3.5670 0.9976 0.7500 0.7518 2 1.0000 1D 
11.5310 3.5317 0.9976 0.7624 0.7642 6 1.0000 1D 
10.8170 3.7213 0.9976 0.8147 0.8167 2 1.0000 1D 
9.1434 3.6614 0.9976 0.7464 0.7482 1 1.0000 1D 
10.1038 3.5877 0.9976 0.7405 0.7422 3 1.0000 1D 
9.1750 3.7997 0.9976 0.7698 0.7716 1 1.0000 1D 
12.3588 3.5160 0.9976 0.7512 0.7530 4 1.0000 1D 
10.2462 3.6566 0.9976 0.7357 0.7375 3 1.0000 1D 
9.6743 3.5250 0.9976 0.7630 0.7648 5 1.0000 1D 
9.1120 3.6871 0.9976 0.7512 0.7529 2 1.0000 1D 
12.0336 3.6020 0.9976 0.7780 0.7799 0 1.0000 1D 
10.1343 3.5026 0.9976 0.7303 0.7321 1 1.0000 1D 
11.7435 3.4305 0.9976 0.7387 0.7405 2 1.0000 1D 
9.6917 3.6180 0.9976 0.7712 0.7730 1 1.0000 1D 
11.4213 3.4371 0.9976 0.7547 0.7565 1 1.0000 1D 
9.4550 3.7445 0.9976 0.7565 0.7583 0 1.0000 1D 
9.6525 3.7297 0.9976 0.7547 0.7565 1 1.0000 1D 
9.6765 3.6017 0.9976 0.7406 0.7423 2 1.0000 1D 
8.9047 3.7459 0.9976 0.7394 0.7412 1 1.0000 1D 
11.9245 3.5010 0.9976 0.7245 0.7262 3 1.0000 1D 
10.7633 3.4918 0.9976 0.7464 0.7482 2 1.0000 1D 
14.1308 3.3938 0.9976 0.7701 0.7720 0 1.0000 1D 
9.7204 3.6753 0.9976 0.7482 0.7500 1 1.0000 1D 
10.1042 3.7521 0.9976 0.7730 0.7749 2 1.0000 1D 
11.4027 3.4233 0.9976 0.7530 0.7548 2 1.0000 1D 
10.7875 3.4566 0.9976 0.7488 0.7506 2 1.0000 1D 
12.6567 3.2913 0.9976 0.7571 0.7589 0 1.0000 1D 
10.2746 3.3909 0.9976 0.7069 0.7085 3 1.0000 1D 
9.6899 3.5797 0.9976 0.7305 0.7322 2 1.0000 1D 
10.7698 3.3789 0.9976 0.7208 0.7225 4 1.0000 1D 
13.0605 3.5320 0.9976 0.7589 0.7607 2 1.0000 1D 
9.9304 3.4435 0.9976 0.7464 0.7482 1 1.0000 1D 
10.5579 3.4686 0.9976 0.7373 0.7391 0 1.0000 1D 
9.2348 3.4756 0.9976 0.7310 0.7327 1 1.0000 1D 
9.9000 3.5798 0.9976 0.7352 0.7370 3 1.0000 1D 
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FMT NAS PF TPS PS CD CA COA 
9.4779 3.6320 0.9976 0.7423 0.7441 1 1.0000 1D 
10.3573 3.5923 0.9976 0.7109 0.7126 0 1.0000 1D 
9.7622 3.5653 0.9976 0.7441 0.7458 1 1.0000 1D 
10.6510 3.5667 0.9976 0.7647 0.7665 4 1.0000 1D 
10.4308 3.4840 0.9976 0.7452 0.7470 2 1.0000 1D 
9.0162 3.7584 0.9976 0.7464 0.7482 3 1.0000 1D 
11.6548 3.4457 0.9976 0.7314 0.7332 0 1.0000 1D 
9.4646 3.5260 0.9976 0.7648 0.7667 2 1.0000 1D 
9.2086 3.5424 0.9976 0.7167 0.7184 1 1.0000 1D 
9.6773 3.4702 0.9976 0.7275 0.7292 1 1.0000 1D 
10.2880 3.5374 0.9976 0.7705 0.7724 1 1.0000 1D 
10.3546 3.5772 0.9976 0.7572 0.7590 1 1.0000 1D 
9.7538 3.4982 0.9976 0.7441 0.7458 1 1.0000 1D 
9.0496 3.6365 0.9976 0.7294 0.7311 4 1.0000 1D 
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APPENDIX 2: FCS RAW DATA 

FMT NAS PF TPS PS CD CA COA 
3.4232 2.1049 0.8188 0.5165 0.6311 0 0.7414 2A 
3.0793 2.1559 0.7718 0.5506 0.7134 0 0.7414 2A 
3.4291 2.1111 0.7929 0.5399 0.6805 0 0.7414 2A 
3.3145 2.1582 0.8024 0.5446 0.6784 0 0.7414 2A 
3.1468 2.1416 0.8118 0.5529 0.6812 0 0.7414 2A 
3.3493 2.1215 0.8071 0.5788 0.7172 0 0.7414 2A 
3.0635 2.246 0.7576 0.533 0.704 0 0.7414 2A 
3.3287 2.0942 0.7976 0.5504 0.6891 0 0.7414 2A 
3.0974 2.1819 0.7812 0.564 0.7234 0 0.7414 2A 
3.196 2.1166 0.7859 0.5495 0.6997 0 0.7414 2A 

3.2167 2.2019 0.7718 0.5269 0.6818 0 0.7414 2A 
3.3352 2.0903 0.8329 0.6203 0.745 0 0.7414 2A 
3.105 2.099 0.8 0.5597 0.6988 0 0.7414 2A 

3.3594 2.0035 0.8541 0.5761 0.674 0 0.7414 2A 
3.3869 2.1245 0.7976 0.5318 0.6667 0 0.7414 2A 
3.2715 2.0469 0.8376 0.5869 0.7003 0 0.7414 2A 
3.1111 2.1997 0.7835 0.5446 0.6946 0 0.7414 2A 
3.3444 2.1758 0.8047 0.554 0.688 0 0.7414 2A 
3.2883 2.2052 0.7435 0.5446 0.7319 0 0.7414 2A 
3.2754 2.1917 0.7953 0.5105 0.6412 0 0.7414 2A 
3.3197 2.1496 0.7553 0.5647 0.7477 0 0.7414 2A 
3.3659 2.1548 0.7506 0.561 0.7469 0 0.7414 2A 
3.1913 2.1023 0.7671 0.5469 0.7125 0 0.7414 2A 
3.1006 2.1643 0.7859 0.5493 0.6985 0 0.7414 2A 
3.0779 2.2286 0.7435 0.4801 0.6447 0 0.7414 2A 
3.5248 2.0871 0.7882 0.5647 0.7164 0 0.7414 2A 
3.2471 2.1238 0.7718 0.5248 0.681 0 0.7414 2A 
3.9056 2.0411 0.7788 0.5738 0.7357 0 0.7414 2A 

3.35 2.0725 0.7882 0.5634 0.7143 0 0.7414 2A 
3.2314 2.125 0.7882 0.5236 0.6647 0 0.7414 2A 
3.4649 2.0416 0.8118 0.5493 0.6763 0 0.7414 2A 
3.4069 2.0763 0.8235 0.5812 0.7057 0 0.7414 2A 
3.1458 2.1542 0.7365 0.5236 0.7115 0 0.7414 2A 
3.2994 2.0758 0.8094 0.545 0.6745 0 0.7414 2A 
3.1009 2.1 0.7929 0.5647 0.7122 0 0.7414 2A 
3.1138 2.1408 0.7812 0.5164 0.6607 0 0.7414 2A 
3.2659 2.1484 0.7953 0.5529 0.6953 0 0.7414 2A 
3.2595 2.1252 0.8094 0.5399 0.6667 0 0.7414 2A 
3.2538 2.1516 0.7718 0.56 0.7256 0 0.7414 2A 
3.312 2.1279 0.8165 0.5929 0.7262 0 0.7414 2A 

3.6419 2.1242 0.7694 0.5412 0.7034 0 0.7414 2A 
3.2606 2.1896 0.7835 0.5401 0.6898 0 0.7414 2A 
3.2818 2.1012 0.7882 0.5461 0.6937 0 0.7414 2A 
3.3709 2.0947 0.8047 0.5849 0.7273 0 0.7414 2A 
3.4375 2.1321 0.7859 0.5236 0.6667 0 0.7414 2A 
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FMT NAS PF TPS PS CD CA COA 
3.2625 2.0979 0.7976 0.5976 0.7493 0 0.7414 2A 
3.182 2.1239 0.7765 0.5236 0.6748 0 0.7414 2A 

3.2852 2.1452 0.7765 0.5153 0.6636 0 0.7414 2A 
3.3879 2.0808 0.8024 0.5718 0.7126 0 0.7414 2A 
3.1565 2.159 0.7929 0.5376 0.6775 0 0.7414 2A 
9.6613 1.2691 0.9976 0.2048 0.2053 4 1 2B 
14.5224 1.215 0.9976 0.184 0.1844 6 1 2B 
11.7831 1.1853 0.9976 0.1745 0.1749 6 1 2B 
9.4254 1.3239 0.9976 0.2424 0.2429 4 1 2B 
8.6008 1.3059 0.9976 0.208 0.2085 1 1 2B 
10.2661 1.245 0.9976 0.228 0.2286 5 1 2B 
9.1708 1.3808 0.9976 0.1943 0.1948 7 1 2B 
11.9826 1.1678 0.9976 0.1844 0.1848 5 1 2B 
8.544 1.3323 0.9976 0.1885 0.189 2 1 2B 

9.1057 1.1754 0.9976 0.2043 0.2048 5 1 2B 
8.5368 1.314 0.9976 0.1718 0.1722 6 1 2B 
11.009 1.1913 0.9976 0.2214 0.222 1 1 2B 
10.8566 1.1847 0.9976 0.1823 0.1827 3 1 2B 
9.7578 1.1248 0.9976 0.2128 0.2133 3 1 2B 
10.2408 1.2643 0.9976 0.1734 0.1738 6 1 2B 
9.7044 1.1433 0.9976 0.1671 0.1675 4 1 2B 
7.8368 1.3754 0.9976 0.2204 0.2209 4 1 2B 
7.7933 1.3604 0.9976 0.1887 0.1891 4 1 2B 
9.0284 1.2976 0.9976 0.1887 0.1891 3 1 2B 
8.0753 1.35 0.9976 0.1925 0.1929 3 1 2B 
9.801 1.1954 0.9976 0.2014 0.2019 3 1 2B 

12.6654 1.1671 0.9976 0.1863 0.1868 3 1 2B 
10.907 1.1154 0.9976 0.1679 0.1683 4 1 2B 
10.0505 1.2916 0.9976 0.2235 0.2241 3 1 2B 
8.0572 1.3414 0.9976 0.1801 0.1805 5 1 2B 
12.1979 1.1457 0.9976 0.2134 0.2139 3 1 2B 
9.0962 1.1588 0.9976 0.1818 0.1823 4 1 2B 
12.6317 1.0305 0.9976 0.2047 0.2052 2 1 2B 
10.8304 1.1223 0.9976 0.2304 0.231 5 1 2B 
9.0401 1.2369 0.9976 0.1934 0.1939 3 1 2B 
13.6755 1.1075 0.9976 0.1816 0.182 4 1 2B 
11.6641 1.1749 0.9976 0.191 0.1915 3 1 2B 
10.3065 1.1316 0.9976 0.1967 0.1971 2 1 2B 
10.8157 1.2093 0.9976 0.1699 0.1703 5 1 2B 
11.8751 1.1609 0.9976 0.1971 0.1976 2 1 2B 
9.6545 1.2754 0.9976 0.1698 0.1702 7 1 2B 
8.4899 1.2832 0.9976 0.1991 0.1995 2 1 2B 
9.7525 1.2409 0.9976 0.227 0.2275 4 1 2B 
9.0193 1.2372 0.9976 0.2156 0.2162 1 1 2B 
10.2839 1.2625 0.9976 0.2306 0.2311 2 1 2B 
10.512 1.1369 0.9976 0.181 0.1814 2 1 2B 
10.6253 1.3631 0.9976 0.1855 0.186 5 1 2B 
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FMT NAS PF TPS PS CD CA COA 
9.8558 1.1949 0.9976 0.1548 0.1551 4 1 2B 
11.0848 1.1786 0.9976 0.1726 0.173 5 1 2B 
11.8934 1.1896 0.9976 0.2241 0.2246 2 1 2B 
10.255 1.1698 0.9976 0.2019 0.2024 3 1 2B 
8.4128 1.2181 0.9976 0.1779 0.1783 1 1 2B 
10.94 1.2577 0.9976 0.2225 0.223 2 1 2B 

10.9993 1.1629 0.9976 0.2067 0.2071 5 1 2B 
8.224 1.3251 0.9976 0.169 0.1695 4 1 2B 

2.9554 5.1027 0.8212 0.5282 0.6429 0 0.7478 2C 
2.8873 5.1343 0.7835 0.5459 0.6967 0 0.7478 2C 
2.9975 5.1059 0.8 0.5211 0.651 0 0.7478 2C 

2.96 5.1383 0.8141 0.5728 0.7032 0 0.7478 2C 
2.838 5.126 0.8259 0.5141 0.6222 0 0.7478 2C 

2.9695 5.1028 0.8235 0.5873 0.7135 0 0.7478 2C 
2.8613 5.2233 0.7718 0.4929 0.6391 0 0.7478 2C 
2.9569 5.077 0.8165 0.5469 0.6695 0 0.7478 2C 
2.9513 5.1727 0.7859 0.5637 0.7177 0 0.7478 2C 
2.9714 5.098 0.8 0.5354 0.6696 0 0.7478 2C 
2.9434 5.1773 0.7859 0.5152 0.6548 0 0.7478 2C 
3.0847 5.0751 0.84 0.6014 0.7163 0 0.7478 2C 
2.8595 5.0662 0.8188 0.5738 0.7 0 0.7478 2C 
2.9827 4.999 0.8588 0.541 0.6294 0 0.7478 2C 
3.0386 5.104 0.8165 0.5377 0.659 0 0.7478 2C 
3.0399 5.0367 0.8447 0.6009 0.7111 0 0.7478 2C 
2.8708 5.19 0.7929 0.5822 0.7337 0 0.7478 2C 
3.0122 5.1479 0.8259 0.5352 0.6477 0 0.7478 2C 
2.9151 5.1919 0.7506 0.5 0.6656 0 0.7478 2C 
2.9323 5.1839 0.8071 0.5423 0.6715 0 0.7478 2C 
3.0615 5.1251 0.7741 0.5283 0.6829 0 0.7478 2C 
2.8289 5.143 0.76 0.5446 0.716 0 0.7478 2C 
2.9554 5.0656 0.7882 0.5728 0.7262 0 0.7478 2C 
2.9036 5.1421 0.8118 0.5563 0.685 0 0.7478 2C 
3.0008 5.2112 0.7553 0.5199 0.6873 0 0.7478 2C 
3.138 5.0581 0.8071 0.5694 0.7055 0 0.7478 2C 

2.9341 5.1025 0.7882 0.5296 0.6727 0 0.7478 2C 
3.0917 5.0228 0.7953 0.541 0.6794 0 0.7478 2C 
2.9684 5.0654 0.7929 0.5657 0.713 0 0.7478 2C 
2.9835 5.1153 0.7929 0.5448 0.6875 0 0.7478 2C 
2.9841 5.0265 0.8212 0.5516 0.6714 0 0.7478 2C 
2.9824 5.0673 0.8353 0.5704 0.6826 0 0.7478 2C 
2.8129 5.1439 0.7506 0.5354 0.7138 0 0.7478 2C 
3.0551 5.0482 0.8259 0.5782 0.7011 0 0.7478 2C 
3.0024 5.0869 0.8047 0.5788 0.7193 0 0.7478 2C 
2.8538 5.155 0.7812 0.5305 0.6787 0 0.7478 2C 
2.9129 5.1307 0.8165 0.5812 0.7118 0 0.7478 2C 
2.8842 5.1079 0.8235 0.5469 0.6638 0 0.7478 2C 
2.9341 5.1263 0.7882 0.5412 0.6866 0 0.7478 2C 
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FMT NAS PF TPS PS CD CA COA 
2.9137 5.1132 0.8212 0.5751 0.7 0 0.7478 2C 
2.8966 5.1063 0.7835 0.5129 0.6547 0 0.7478 2C 
2.9744 5.175 0.7953 0.5542 0.6973 0 0.7478 2C 
3.0675 5.0836 0.8 0.5461 0.6834 0 0.7478 2C 
2.935 5.071 0.8188 0.5236 0.6398 0 0.7478 2C 

2.8272 5.1135 0.8047 0.5211 0.6472 0 0.7478 2C 
2.8883 5.0791 0.8141 0.5647 0.6936 0 0.7478 2C 
2.9564 5.0979 0.7882 0.5141 0.6518 0 0.7478 2C 
3.0022 5.139 0.7859 0.5576 0.7096 0 0.7478 2C 
2.8994 5.066 0.8094 0.5129 0.6337 0 0.7478 2C 
2.8379 5.1557 0.8024 0.5352 0.6667 0 0.7478 2C 
3.7588 4.8069 0.9741 0.5835 0.599 1 1 2D 
3.4789 4.7719 0.9906 0.5788 0.5843 2 1 2D 
3.4735 4.7876 0.9788 0.5657 0.5779 0 1 2D 
3.8007 4.8285 0.9906 0.5812 0.5867 3 1 2D 

3.51 4.8097 0.9882 0.5981 0.6053 1 1 2D 
3.5406 4.7746 0.9859 0.5708 0.5789 1 1 2D 
3.696 4.845 0.9788 0.5637 0.5759 2 1 2D 

3.6772 4.7752 0.9788 0.5906 0.6034 0 1 2D 
3.5899 4.8433 0.9741 0.5896 0.6053 0 1 2D 
3.652 4.7281 0.9835 0.5532 0.5625 4 1 2D 

3.6699 4.8576 0.9788 0.5915 0.6043 1 1 2D 
3.65 4.7465 0.9788 0.5626 0.5749 1 1 2D 

3.3757 4.7804 0.9812 0.6226 0.6346 0 1 2D 
3.6134 4.7194 0.9882 0.6455 0.6532 0 1 2D 
3.7842 4.7993 0.9788 0.6329 0.6466 0 1 2D 
3.8397 4.7077 0.9882 0.6 0.6071 1 1 2D 
3.6795 4.8586 0.9812 0.6197 0.6316 0 1 2D 
3.5925 4.8546 0.9835 0.5849 0.5947 0 1 2D 
3.4133 4.848 0.9741 0.6085 0.6247 0 1 2D 
3.5963 4.8895 0.9694 0.5563 0.5738 2 1 2D 
3.5736 4.724 0.9835 0.5283 0.5372 1 1 2D 
3.5786 4.7092 0.9882 0.5953 0.6024 2 1 2D 
3.7691 4.6476 0.9788 0.5235 0.5348 2 1 2D 
3.493 4.8323 0.9788 0.6009 0.6139 2 1 2D 

3.4228 4.8737 0.9812 0.6071 0.6187 0 1 2D 
3.7033 4.6742 0.9741 0.5354 0.5496 2 1 2D 
3.5499 4.7487 0.9835 0.6043 0.6145 1 1 2D 
3.7007 4.6675 0.9788 0.6009 0.6139 1 1 2D 
3.5518 4.6937 0.9741 0.6033 0.6193 1 1 2D 
3.5995 4.7868 0.9812 0.5943 0.6058 0 1 2D 
3.7848 4.6869 0.9718 0.5587 0.5749 2 1 2D 
3.7498 4.7653 0.9812 0.5835 0.5947 2 1 2D 
3.5665 4.7174 0.9859 0.5519 0.5598 2 1 2D 
3.5218 4.7339 0.9812 0.5972 0.6087 0 1 2D 
3.8332 4.7273 0.9741 0.6085 0.6247 1 1 2D 
3.485 4.805 0.9741 0.6094 0.6256 0 1 2D 
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FMT NAS PF TPS PS CD CA COA 
3.5289 4.8139 0.9718 0.5459 0.5617 3 1 2D 
3.464 4.8092 0.9788 0.5553 0.5673 1 1 2D 

3.6728 4.773 0.9694 0.5613 0.5791 0 1 2D 
3.6984 4.8241 0.9647 0.5446 0.5645 1 1 2D 
3.7763 4.6909 0.9859 0.5859 0.5943 3 1 2D 
3.6571 4.8935 0.9812 0.6123 0.6241 0 1 2D 
3.5098 4.7184 0.9882 0.6052 0.6124 0 1 2D 
3.6817 4.7436 0.9741 0.5495 0.5642 1 1 2D 
3.6338 4.7682 0.9765 0.6118 0.6265 1 1 2D 
3.7752 4.7118 0.9694 0.5647 0.5825 2 1 2D 
3.483 4.7566 0.9835 0.6108 0.6211 1 1 2D 

3.4327 4.7743 0.9882 0.5498 0.5564 0 1 2D 
3.9431 4.7202 0.9765 0.5731 0.587 0 1 2D 
3.6601 4.8122 0.9765 0.554 0.5673 0 1 2D 
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APPENDIX 3: MAUT FUNCTION 

function(weights, data) 
{ 
# 
# strip COA designator from data 
 temp <- data[, 1:7]  # get best and worst column data 
 bestFMT <- min(temp[, 1]) 
 worstFMT <- max(temp[, 1]) 
 bestNAS <- max(temp[, 2]) 
 worstNAS <- min(temp[, 2]) 
 bestPF <- max(temp[, 3]) 
 worstPF <- min(temp[, 3]) 
 bestTPS <- max(temp[, 4]) 
 worstTPS <- min(temp[, 4]) 
 bestPS <- max(temp[, 5]) 
 worstPS <- min(temp[, 5]) 
 bestCD <- min(temp[, 6]) 
 worstCD <- max(temp[, 6]) 
 bestCA <- max(temp[, 7]) 
 worstCA <- min(temp[, 7]) 
 best <- c(bestFMT, bestNAS, bestPF, bestTPS, bestPS, bestCD, bestCA) 
 worst <- c(worstFMT, worstNAS, worstPF, worstTPS, worstPS, worstCD, worstCA) 
 # compute individual values for each column 
 difference <- best - worst 
 for(i in 1:length(temp[, 1])) { 
  temp[i,  ] <- (temp[i,  ] - worst)/difference 
 } 
# mult columns by weight and then sum the rows to get MAUT values 
 x <- t(weights %*% t(temp)) 
 x <- data.frame(x, data[, 8]) 
 names(x) <- c("UTILITY", "COA") 
 return(x) 
} 
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APPENDIX 4: FSST PROGRAM 

A. INSTANCE METHODS 

1. AO 
 
/** 
 * Juan K. Ulloa <BR> 
 * Thesis: FSST 
 * January 13, 2001 
 * 
 * <P> This class establishes the Area of Operations (AO) for the 
 *     simulation.  This class also establishes the parameters for 
 *     what distributions dictate where targets arrive in the AO.  
**/ 
 
package fsst; 
import simkit.*; 
import simkit.smd.*; 
import simkit.data.*; 
 
public class AO{ 
 
// class variables 
   public static RandomNumber seed; 
 
// instance variables 
   private RandomVariate xCoord; 
   private RandomVariate yCoord; 
   private Coordinate lowerLeft; 
   private Coordinate upperRight; 
   private String xDistribution; 
   private String yDistribution; 
   private Object[] xDistributionParameters; 
   private Object[] yDistributionParameters; 
 
// constructors 
   static {seed = RandomFactory.getRandomNumber();} 
 
   public AO(Coordinate theLowerLeft, Coordinate theUpperRight, 
     String xDist, Object[] xDistParams, String yDist, Object[] yDistParams){ 
      xDistribution = xDist; 
      xDistributionParameters = (Object[])xDistParams.clone(); 
      yDistribution = yDist; 
      yDistributionParameters = (Object[])yDistParams.clone(); 
      lowerLeft = new Coordinate(theLowerLeft); 
      upperRight = new Coordinate(theUpperRight); 
      xCoord = RandomFactory.getRandomVariate(xDistribution, xDistributionParameters, 
        RandomFactory.getRandomNumber()); 
      yCoord = RandomFactory.getRandomVariate(yDistribution, yDistributionParameters, 
        RandomFactory.getRandomNumber()); 
    } 
 
    public AO(AO theBox){ 
      this(theBox.getLowerLeft(),theBox.getUpperRight(), theBox.getXDistribution(), 
        theBox.getXDistributionParameters(), theBox.getYDistribution(), 
        theBox.getYDistributionParameters()); 
    } 
 
// class methods 
   public static void setSeed(long theSeed){ 
    seed.setSeed(theSeed); 
   } 
 
// instance methods 
   public Coordinate getLowerLeft(){return new Coordinate(lowerLeft);} 
 
   public Coordinate getUpperRight(){return new Coordinate(upperRight);} 
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   public Coordinate getRandomLocation(){ 
      double xCoordinate = xCoord.generate(); 
      double yCoordinate = upperRight.getYCoord()-yCoord.generate(); 
      if ((xCoordinate >= lowerLeft.getXCoord()) && 
        (xCoordinate <= upperRight.getXCoord()) && 
        (yCoordinate >= 0)){ 
         return new Coordinate(xCoordinate, yCoordinate); 
      } 
      else { 
         return this.getRandomLocation(); 
      } 
   } 
 
   public String getXDistribution(){return new String(xDistribution);} 
 
   public String getYDistribution(){return new String(yDistribution);} 
 
   public Object[] getXDistributionParameters(){ 
      return (Object[])xDistributionParameters.clone(); 
   } 
 
   public Object[] getYDistributionParameters(){ 
      return (Object[])yDistributionParameters.clone(); 
   } 
 
   public String toString(){ 
      return "Lower left: " + this.getLowerLeft() + ", Upper Right: " + 
        this.getUpperRight() + ", X distribution: " + this.getXDistribution() + 
        ", X distribution parameters: " + this.getXDistributionParameters() + 
        ", Y distribution: " + this.getYDistribution() + 
        ", Y distribution parameters: " + this.getYDistributionParameters(); 
   } 
 
} 
 

2. BattlefieldData 
/** 
 * Juan K. Ulloa <BR> 
 * Thesis: FSST 
 * January 13, 2001 
 * 
 * <P> This class tracks the battlefield data such as makeup, etc. 
 * 
**/ 
 
package fsst; 
import java.util.*; 
 
public class BattleFieldData{ 
 
   private double percentArmor; 
   private double percentInfantryInOpen; 
   private double percentInfantryDugIn; 
   private double percentArmoredPC; 
   private double percentLightSkinVehicle; 
 
   private int destroyArmor; 
   private int destroyArmorSalvo; 
   private int neutralizeArmor; 
   private int neutralizeArmorSalvo; 
   private int suppressArmor; 
   private int suppressArmorSalvo; 
 
   private int destroyIIO; 
   private int destroyIIOSalvo; 
   private int neutralizeIIO; 
   private int neutralizeIIOSalvo; 
   private int suppressIIO; 
   private int suppressIIOSalvo; 
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   private int destroyIDI; 
   private int destroyIDISalvo; 
   private int neutralizeIDI; 
   private int neutralizeIDISalvo; 
   private int suppressIDI; 
   private int suppressIDISalvo; 
 
   private int destroyAPC; 
   private int destroyAPCSalvo; 
   private int neutralizeAPC; 
   private int neutralizeAPCSalvo; 
   private int suppressAPC; 
   private int suppressAPCSalvo; 
 
   private int destroyLSV; 
   private int destroyLSVSalvo; 
   private int neutralizeLSV; 
   private int neutralizeLSVSalvo; 
   private int suppressLSV; 
   private int suppressLSVSalvo; 
 
   private double percentDestroy; 
   private double percentNeutralize; 
   private double percentSuppress; 
 
   private double fleeProbability; 
   private long seed; 
   private Random r; 
 
   private double collateralDamageRadius; 
   private double collateralDamagePercent; 
   private int numberCollateralDamageCausingRounds; 
 
   public BattleFieldData(double thePercentArmor,int theDestroyArmor, 
     int theDestroyArmorSalvo,int theNeutralizeArmor,int theNeutralizeArmorSalvo, 
     int theSuppressArmor,int theSuppressArmorSalvo,double thePercentInfantryInOpen, 
     int theDestroyIIO,int theDestroyIIOSalvo,int theNeutralizeIIO, 
     int theNeutralizeIIOSalvo,int theSuppressIIO,int theSuppressIIOSalvo, 
     double thePercentInfantryDugIn,int theDestroyIDI,int theDestroyIDISalvo, 
     int theNeutralizeIDI,int theNeutralizeIDISalvo,int theSuppressIDI, 
     int theSuppressIDISalvo,double thePercentArmoredPC,int theDestroyAPC, 
     int theDestroyAPCSalvo,int theNeutralizeAPC,int theNeutralizeAPCSalvo, 
     int theSuppressAPC,int theSuppressAPCSalvo,double thePercentLightSkinVehicle, 
     int theDestroyLSV,int theDestroyLSVSalvo,int theNeutralizeLSV, 
     int theNeutralizeLSVSalvo,int theSuppressLSV,int theSuppressLSVSalvo, 
     double thePercentDestroy, double thePercentNeutralize, double thePercentSuppress, 
     double theFleeProbability,long theSeed,double theCollateralDamageRadius, 
     double theCollateralDamagePercent){ 
 
      percentArmor = thePercentArmor; 
      destroyArmor = theDestroyArmor; 
      destroyArmorSalvo = theDestroyArmorSalvo; 
      neutralizeArmor = theNeutralizeArmor; 
      neutralizeArmorSalvo = theNeutralizeArmorSalvo; 
      suppressArmor = theSuppressArmor; 
      suppressArmorSalvo = theSuppressArmorSalvo; 
 
      percentInfantryInOpen = thePercentInfantryInOpen; 
      destroyIIO = theDestroyIIO; 
      destroyIIOSalvo = theDestroyIIOSalvo; 
      neutralizeIIO = theNeutralizeIIO; 
      neutralizeIIOSalvo = theNeutralizeIIOSalvo; 
      suppressIIO = theSuppressIIO; 
      suppressIIOSalvo = theSuppressIIOSalvo; 
 
      percentInfantryDugIn = thePercentInfantryDugIn; 
      destroyIDI = theDestroyIDI; 
      destroyIDISalvo = theDestroyIDISalvo; 
      neutralizeIDI = theNeutralizeIDI; 
      neutralizeIDISalvo = theNeutralizeIDISalvo; 
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      suppressIDI = theSuppressIDI; 
      suppressIDISalvo = theSuppressIDISalvo; 
 
      percentArmoredPC = thePercentArmoredPC; 
      destroyAPC = theDestroyAPC; 
      destroyAPCSalvo = theDestroyAPCSalvo; 
      neutralizeAPC = theNeutralizeAPC; 
      neutralizeAPCSalvo = theNeutralizeAPCSalvo; 
      suppressAPC = theSuppressAPC; 
      suppressAPCSalvo = theSuppressAPCSalvo; 
 
      percentLightSkinVehicle = thePercentLightSkinVehicle; 
      destroyLSV = theDestroyLSV; 
      destroyLSVSalvo = theDestroyLSVSalvo; 
      neutralizeLSV = theNeutralizeLSV; 
      neutralizeLSVSalvo = theNeutralizeLSVSalvo; 
      suppressLSV = theSuppressLSV; 
      suppressLSVSalvo = theSuppressLSVSalvo; 
 
      percentDestroy = thePercentDestroy; 
      percentNeutralize = thePercentNeutralize; 
      percentSuppress = thePercentSuppress; 
 
      setSeed(theSeed); 
      r = new Random(theSeed); 
      setFleeProbability(theFleeProbability); 
      collateralDamageRadius = theCollateralDamageRadius; 
      collateralDamagePercent = theCollateralDamagePercent; 
   } 
 
   public BattleFieldData(BattleFieldData theBattleFieldData){ 
      percentArmor = theBattleFieldData.getPercentArmor(); 
      destroyArmor = theBattleFieldData.getDestroyArmor(); 
      destroyArmorSalvo = theBattleFieldData.getDestroyArmorSalvo(); 
      neutralizeArmor = theBattleFieldData.getNeutralizeArmor(); 
      neutralizeArmorSalvo = theBattleFieldData.getNeutralizeArmorSalvo(); 
      suppressArmor = theBattleFieldData.getSuppressArmor(); 
      suppressArmorSalvo = theBattleFieldData.getSuppressArmorSalvo(); 
 
      percentInfantryInOpen = theBattleFieldData.getPercentIIO(); 
      destroyIIO = theBattleFieldData.getDestroyIIO(); 
      destroyIIOSalvo = theBattleFieldData.getDestroyIIOSalvo(); 
      neutralizeIIO = theBattleFieldData.getNeutralizeIIO(); 
      neutralizeIIOSalvo = theBattleFieldData.getNeutralizeIIOSalvo(); 
      suppressIIO = theBattleFieldData.getSuppressIIO(); 
      suppressIIOSalvo = theBattleFieldData.getSuppressIIOSalvo(); 
 
      percentInfantryDugIn = theBattleFieldData.getPercentIDI(); 
      destroyIDI = theBattleFieldData.getDestroyIDI(); 
      destroyIDISalvo = theBattleFieldData.getDestroyIDISalvo(); 
      neutralizeIDI = theBattleFieldData.getNeutralizeIDI(); 
      neutralizeIDISalvo = theBattleFieldData.getNeutralizeIDISalvo(); 
      suppressIDI = theBattleFieldData.getSuppressIDI(); 
      suppressIDISalvo = theBattleFieldData.getSuppressIDISalvo(); 
 
      percentArmoredPC = theBattleFieldData.getPercentAPC(); 
      destroyAPC = theBattleFieldData.getDestroyAPC(); 
      destroyAPCSalvo = theBattleFieldData.getDestroyAPCSalvo(); 
      neutralizeAPC = theBattleFieldData.getNeutralizeAPC(); 
      neutralizeAPCSalvo = theBattleFieldData.getNeutralizeAPCSalvo(); 
      suppressAPC = theBattleFieldData.getSuppressAPC(); 
      suppressAPCSalvo = theBattleFieldData.getSuppressAPCSalvo(); 
 
      percentLightSkinVehicle = theBattleFieldData.getPercentLSV(); 
      destroyLSV = theBattleFieldData.getDestroyLSV(); 
      destroyLSVSalvo = theBattleFieldData.getDestroyLSVSalvo(); 
      neutralizeLSV = theBattleFieldData.getNeutralizeLSV(); 
      neutralizeLSVSalvo = theBattleFieldData.getNeutralizeLSVSalvo(); 
      suppressLSV = theBattleFieldData.getSuppressLSV(); 
      suppressLSVSalvo = theBattleFieldData.getSuppressLSVSalvo(); 
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      percentDestroy = theBattleFieldData.getPercentDestroy(); 
      percentNeutralize = theBattleFieldData.getPercentNeutralize(); 
      percentSuppress = theBattleFieldData.getPercentSuppress(); 
 
      setSeed(theBattleFieldData.getSeed()); 
      r = new Random(seed); 
      setFleeProbability(theBattleFieldData.getFleeProbability()); 
      collateralDamageRadius = theBattleFieldData.getCollateralDamageRadius(); 
      collateralDamagePercent = theBattleFieldData.getCollateralDamagePercent(); 
   } 
 
   public double getPercentArmor(){return percentArmor;} 
 
   public int getDestroyArmor(){return destroyArmor;} 
 
   public int getDestroyArmorSalvo(){return destroyArmorSalvo;} 
 
   public int getNeutralizeArmor(){return neutralizeArmor;} 
 
   public int getNeutralizeArmorSalvo(){return neutralizeArmorSalvo;} 
 
   public int getSuppressArmor(){return suppressArmor;} 
 
   public int getSuppressArmorSalvo(){return suppressArmorSalvo;} 
 
   public double getPercentIIO(){return percentInfantryInOpen;} 
 
   public int getDestroyIIO(){return destroyIIO;} 
 
   public int getDestroyIIOSalvo(){return destroyIIOSalvo;} 
 
   public int getNeutralizeIIO(){return neutralizeIIO;} 
 
   public int getNeutralizeIIOSalvo(){return neutralizeIIOSalvo;} 
 
   public int getSuppressIIO(){return suppressIIO;} 
 
   public int getSuppressIIOSalvo(){return suppressIIOSalvo;} 
 
   public double getPercentIDI(){return percentInfantryDugIn;} 
 
   public int getDestroyIDI(){return destroyIDI;} 
 
   public int getDestroyIDISalvo(){return destroyIDISalvo;} 
 
   public int getNeutralizeIDI(){return neutralizeIDI;} 
 
   public int getNeutralizeIDISalvo(){return neutralizeIDISalvo;} 
 
   public int getSuppressIDI(){return suppressIDI;} 
 
   public int getSuppressIDISalvo(){return suppressIDISalvo;} 
 
   public double getPercentAPC(){return percentArmoredPC;} 
 
   public int getDestroyAPC(){return destroyAPC;} 
 
   public int getDestroyAPCSalvo(){return destroyAPCSalvo;} 
 
   public int getNeutralizeAPC(){return neutralizeAPC;} 
 
   public int getNeutralizeAPCSalvo(){return neutralizeAPCSalvo;} 
 
   public int getSuppressAPC(){return suppressAPC;} 
 
   public int getSuppressAPCSalvo(){return suppressAPCSalvo;} 
 
   public double getPercentLSV(){return percentLightSkinVehicle;} 
 
   public int getDestroyLSV(){return destroyLSV;} 
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   public int getDestroyLSVSalvo(){return destroyLSVSalvo;} 
 
   public int getNeutralizeLSV(){return neutralizeLSV;} 
 
   public int getNeutralizeLSVSalvo(){return neutralizeLSVSalvo;} 
 
   public int getSuppressLSV(){return suppressLSV;} 
 
   public int getSuppressLSVSalvo(){return suppressLSVSalvo;} 
 
   public double getPercentDestroy(){return percentDestroy;} 
 
   public double getPercentNeutralize(){return percentNeutralize;} 
 
   public double getPercentSuppress(){return percentSuppress;} 
 
   public boolean isDestroyed(String targetType, int hits){ 
      if (targetType.equals("Armor")){ 
         return (hits>getDestroyArmor()); 
      } 
      else if(targetType.equals("InfantryInOpen")){ 
         return (hits>getDestroyIIO()); 
      } 
      else if(targetType.equals("InfantryDugIn")){ 
         return (hits>getDestroyIDI()); 
      } 
      else if(targetType.equals("APC")){ 
         return (hits>getDestroyAPC()); 
      } 
      else { 
         return (hits>getDestroyLSV()); 
      } 
   } 
 
   public boolean isNeutralized(String targetType, int hits){ 
      if (targetType.equals("Armor")){ 
         return (hits>getNeutralizeArmor()); 
      } 
      else if(targetType.equals("InfantryInOpen")){ 
         return (hits>getNeutralizeIIO()); 
      } 
      else if(targetType.equals("InfantryDugIn")){ 
         return (hits>getNeutralizeIDI()); 
      } 
      else if(targetType.equals("APC")){ 
         return (hits>getNeutralizeAPC()); 
      } 
      else { 
         return (hits>getNeutralizeLSV()); 
      } 
   } 
 
   public boolean isSuppressed(String targetType, int closeCalls){ 
      if (targetType.equals("Armor")){ 
         return (closeCalls>getSuppressArmor()); 
      } 
      else if(targetType.equals("InfantryInOpen")){ 
         return (closeCalls>getSuppressIIO()); 
      } 
      else if(targetType.equals("InfantryDugIn")){ 
         return (closeCalls>getSuppressIDI()); 
      } 
      else if(targetType.equals("APC")){ 
         return (closeCalls>getSuppressAPC()); 
      } 
      else { 
         return (closeCalls>getSuppressLSV()); 
      } 
   } 
 
   public double getFleeProbability(){return fleeProbability;} 
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   public void setFleeProbability(double theFleeProbability){ 
      fleeProbability = theFleeProbability; 
   } 
 
   public double getCollateralDamageRadius(){return collateralDamageRadius;} 
 
   public double getCollateralDamagePercent(){return collateralDamagePercent;} 
 
   public boolean didFlee(){return (r.nextDouble()<fleeProbability);} 
 
   public long getSeed(){return seed;} 
 
   public void setSeed(long theSeed){ 
      seed = theSeed; 
   } 
 
   public String getTargetType(){ 
      double targetGenerator = r.nextDouble(); 
      if (targetGenerator <= percentArmor){ 
         return "Armor"; 
      } 
      else if (targetGenerator <= (percentArmor+percentInfantryInOpen)){ 
         return "InfantryInOpen"; 
      } 
      else if (targetGenerator <= (percentArmor+percentInfantryInOpen+ 
        percentInfantryDugIn)){ 
         return "InfantryDugIn"; 
      } 
      else if (targetGenerator <= (percentArmor+percentInfantryInOpen+ 
        percentInfantryDugIn + percentArmoredPC)){ 
         return "APC"; 
      } 
      else{ 
         return "LightSkinVehicle"; 
      } 
   } 
 
   public String getFireMissionType(){ 
      double missionGenerator = r.nextDouble(); 
      if (missionGenerator <= percentDestroy){ 
         return "Destroy"; 
      } 
      else if (missionGenerator <= (percentDestroy+percentNeutralize)){ 
         return "Neutralize"; 
      } 
      else{ 
         return "Suppress"; 
      } 
   } 
 
   public int getSalvoSize(String theTargetType, String theMission){ 
      if ((theTargetType.equals("Armor"))&&(theMission.equals("Destroy"))){ 
         return destroyArmorSalvo; 
      } 
      else if ((theTargetType.equals("Armor"))&&(theMission.equals("Neutralize"))){ 
         return neutralizeArmorSalvo; 
      } 
      else if ((theTargetType.equals("Armor"))&&(theMission.equals("Suppress"))){ 
         return suppressArmorSalvo; 
      } 
      else if ((theTargetType.equals("InfantryInOpen"))&&(theMission.equals("Destroy"))){ 
         return destroyIIOSalvo; 
      } 
      else if 
((theTargetType.equals("InfantryInOpen"))&&(theMission.equals("Neutralize"))){ 
         return neutralizeIIOSalvo; 
      } 
      else if 
((theTargetType.equals("InfantryInOpen"))&&(theMission.equals("Suppress"))){ 
         return suppressIIOSalvo; 
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      } 
      else if ((theTargetType.equals("InfantryDugIn"))&&(theMission.equals("Destroy"))){ 
         return destroyIDISalvo; 
      } 
      else if 
((theTargetType.equals("InfantryDugIn"))&&(theMission.equals("Neutralize"))){ 
         return neutralizeIDISalvo; 
      } 
      else if ((theTargetType.equals("InfantryDugIn"))&&(theMission.equals("Suppress"))){ 
         return suppressIDISalvo; 
      } 
      else if ((theTargetType.equals("APC"))&&(theMission.equals("Destroy"))){ 
         return destroyAPCSalvo; 
      } 
      else if ((theTargetType.equals("APC"))&&(theMission.equals("Neutralize"))){ 
         return neutralizeAPCSalvo; 
      } 
      else if ((theTargetType.equals("APC"))&&(theMission.equals("Suppress"))){ 
         return suppressAPCSalvo; 
      } 
      else if 
((theTargetType.equals("LightSkinVehicle"))&&(theMission.equals("Destroy"))){ 
         return destroyLSVSalvo; 
      } 
      else if 
((theTargetType.equals("LightSkinVehicle"))&&(theMission.equals("Neutralize"))){ 
         return neutralizeLSVSalvo; 
      } 
      else{ 
         return suppressLSVSalvo; 
      } 
   } 
 
   public int getHitsNeeded(String theTargetType, String theMission){ 
      if ((theTargetType.equals("Armor"))&&(theMission.equals("Destroy"))){ 
         return destroyArmor; 
      } 
      else if ((theTargetType.equals("Armor"))&&(theMission.equals("Neutralize"))){ 
         return neutralizeArmor; 
      } 
      else if ((theTargetType.equals("Armor"))&&(theMission.equals("Suppress"))){ 
         return suppressArmor; 
      } 
      else if ((theTargetType.equals("InfantryInOpen"))&&(theMission.equals("Destroy"))){ 
         return destroyIIO; 
      } 
      else if 
((theTargetType.equals("InfantryInOpen"))&&(theMission.equals("Neutralize"))){ 
         return neutralizeIIO; 
      } 
      else if 
((theTargetType.equals("InfantryInOpen"))&&(theMission.equals("Suppress"))){ 
         return suppressIIO; 
      } 
      else if ((theTargetType.equals("InfantryDugIn"))&&(theMission.equals("Destroy"))){ 
         return destroyIDI; 
      } 
      else if 
((theTargetType.equals("InfantryDugIn"))&&(theMission.equals("Neutralize"))){ 
         return neutralizeIDI; 
      } 
      else if ((theTargetType.equals("InfantryDugIn"))&&(theMission.equals("Suppress"))){ 
         return suppressIDI; 
      } 
      else if ((theTargetType.equals("APC"))&&(theMission.equals("Destroy"))){ 
         return destroyAPC; 
      } 
      else if ((theTargetType.equals("APC"))&&(theMission.equals("Neutralize"))){ 
         return neutralizeAPC; 
      } 
      else if ((theTargetType.equals("APC"))&&(theMission.equals("Suppress"))){ 
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         return suppressAPC; 
      } 
      else if 
((theTargetType.equals("LightSkinVehicle"))&&(theMission.equals("Destroy"))){ 
         return destroyLSV; 
      } 
      else if 
((theTargetType.equals("LightSkinVehicle"))&&(theMission.equals("Neutralize"))){ 
         return neutralizeLSV; 
      } 
      else{ 
         return suppressLSV; 
      } 
   } 
 
   public int getDestroy(String theTargetType){ 
      if (theTargetType.equals("Armor")){ 
         return destroyArmor; 
      } 
      else if (theTargetType.equals("InfantryInOpen")){ 
         return destroyIIO; 
      } 
      else if (theTargetType.equals("InfantryDugIn")){ 
         return destroyIDI; 
      } 
      else if (theTargetType.equals("APC")){ 
         return destroyAPC; 
      } 
      else{ 
         return destroyLSV; 
      } 
   } 
 
   public int getNeutralize(String theTargetType){ 
      if (theTargetType.equals("Armor")){ 
         return neutralizeArmor; 
      } 
      else if (theTargetType.equals("InfantryInOpen")){ 
         return neutralizeIIO; 
      } 
      else if (theTargetType.equals("InfantryDugIn")){ 
         return neutralizeIDI; 
      } 
      else if (theTargetType.equals("APC")){ 
         return neutralizeAPC; 
      } 
      else{ 
         return neutralizeLSV; 
      } 
   } 
 
   public int getSuppress(String theTargetType){ 
      if (theTargetType.equals("Armor")){ 
         return suppressArmor; 
      } 
      else if (theTargetType.equals("InfantryInOpen")){ 
         return suppressIIO; 
      } 
      else if (theTargetType.equals("InfantryDugIn")){ 
         return suppressIDI; 
      } 
      else if (theTargetType.equals("APC")){ 
         return suppressAPC; 
      } 
      else{ 
         return suppressLSV; 
      } 
   } 
 
   public void increaseNumberCollateralDamageCausingRounds(){ 
      numberCollateralDamageCausingRounds++; 
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   } 
 
   public int getNumberCollateralDamageCausingRounds(){ 
      return numberCollateralDamageCausingRounds; 
   } 
 
   public void resetCollateralDamageCausingRounds(){ 
      numberCollateralDamageCausingRounds=0; 
   } 
   public double getRandomNumber(){return r.nextDouble();} 
 
} 
 

3. Shooter 
/** 
 * Juan K. Ulloa <BR> 
 * Thesis: FSST 
 * January 13, 2001 
 * 
 * <P> This class creates an instance of an artillery piece (shooter). 
 *  
**/ 
 
package fsst; 
import simkit.*; 
import simkit.data.*; 
import simkit.smd.*; 
import java.text.DecimalFormat; 
 
public class Shooter extends SimEntityBase{ 
 
// instance variables 
   private Coordinate shooterLocation; 
   private double shooterRange; 
   private double probableErrorRange; 
   private double probableErrorDeflection; 
   private double maxRateOfFire; 
   private String acquireServiceDistribution; 
   private String firingServiceDistribution; 
   private RandomVariate acquireServiceTime; 
   private RandomVariate firingServiceTime; 
   private RandomVariate shotRangeError; 
   private RandomVariate shotDeflError; 
   private int numberRounds; 
   private int startNumberRounds; 
   private int burstRadius; 
   private double DestroyBurstRadius; 
   private double NeutralizeBurstRadius; 
   private double SuppressBurstRadius; 
   private double meanProjectileVelocity; 
   private String platformType; 
   private int numberGuns; 
 
// constructor methods 
   public Shooter(Coordinate theShooterLocation, double theShooterRange, 
     double thePER, double thePED, String theAcquireServiceDistribution, 
     Object[] theAcquireParameters, String theFiringServiceDistribution, 
     Object[] theFiringParameters, double theMaxRateOfFire, long firingSeed, 
     long acquireSeed, int rounds, int theBurstRadius,double theMeanProjectileVelocity, 
     String thePlatformType, int theNumberGuns){ 
      acquireServiceTime = RandomFactory.getRandomVariate(theAcquireServiceDistribution, 
        theAcquireParameters,acquireSeed); 
      firingServiceTime = RandomFactory.getRandomVariate(theFiringServiceDistribution, 
        theFiringParameters,firingSeed); 
      shotRangeError = RandomFactory.getRandomVariate("Normal", 
        new Object[]{new Double(0.0),new Double(thePER)}); 
      shotDeflError = RandomFactory.getRandomVariate("Normal",new Object[]{new 
Double(0.0), 
        new Double(thePED)}); 
    setAcquireServiceDistribution(theAcquireServiceDistribution); 
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    setFiringServiceDistribution(theFiringServiceDistribution); 
      shooterLocation = new Coordinate(theShooterLocation); 
      shooterRange = theShooterRange; 
      probableErrorRange = thePER; 
      probableErrorDeflection = thePED; 
      startNumberRounds = rounds; 
      numberRounds = rounds; 
      burstRadius = theBurstRadius; 
      DestroyBurstRadius = Math.sqrt(18*burstRadius*burstRadius); 
      NeutralizeBurstRadius = Math.sqrt(6*burstRadius*burstRadius); 
      SuppressBurstRadius = 2*Math.sqrt(3*burstRadius*burstRadius); 
      meanProjectileVelocity = theMeanProjectileVelocity; 
      platformType = new String(thePlatformType); 
      maxRateOfFire = theMaxRateOfFire; 
      numberGuns = theNumberGuns; 
   } 
 
// class methods 
 
   public boolean inRange(Target theTarget){ 
      return (shooterLocation.distanceFrom(theTarget.getTargetLocation())<=shooterRange); 
   } 
 
   public Coordinate getShooterLocation(){return new Coordinate(shooterLocation);} 
 
   public double getShooterRange(){return shooterRange;} 
 
   public void setShooterRange(double theShooterRange){ 
      shooterRange = theShooterRange; 
   } 
 
   public double getPER(){return probableErrorRange;} 
 
   public void setPER(double thePER){ 
      probableErrorRange = thePER; 
   } 
 
   public double getPED(){return probableErrorDeflection;} 
 
   public void setPED(double thePED){ 
      probableErrorDeflection = thePED; 
   } 
 
   public void setAcquireServiceDistribution(String newDistribution){ 
    acquireServiceDistribution = newDistribution; 
   } 
 
   public void setFiringServiceDistribution(String newDistribution){ 
    firingServiceDistribution = newDistribution; 
   } 
 
   public String getAcquireDistribution(){return 
acquireServiceTime.getClass().getName();} 
 
   public String getFiringDistribution(){return firingServiceTime.getClass().getName();} 
 
   public void setAcquireParameters(Object[] newParameters){ 
    acquireServiceTime.setParameters(newParameters); 
   } 
 
   public void setFiringParameters(Object[] newParameters){ 
    firingServiceTime.setParameters(newParameters); 
   } 
 
   public Object[] getAcquireParameters(){return acquireServiceTime.getParameters();} 
 
   public Object[] getFiringParameters(){return firingServiceTime.getParameters();} 
 
   public double getServiceTime(Target theTarget){ 
      int volleys = (int)Math.ceil((double)theTarget.getSalvoSize()/numberGuns);; 
      double tgtRange = shooterLocation.distanceFrom(theTarget.getTargetLocation()); 
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      double tof = tgtRange/meanProjectileVelocity; 
      double firingTime = firingServiceTime.generate(); 
      double acquireTime = acquireServiceTime.generate(); 
      if (firingTime<0.0){ 
         firingTime = 0.0 + volleys/maxRateOfFire; 
      } 
      else{ 
         firingTime += volleys/maxRateOfFire;; 
      } 
      if (acquireTime<0.0){ 
         acquireTime = 0.0; 
      } 
      return firingTime + acquireTime + tof; 
   } 
 
   public double getRepeatServiceTime(Target theTarget){ 
      int volleys = (int)Math.ceil((double)theTarget.getSalvoSize()/numberGuns);; 
      double firingTime = volleys/maxRateOfFire; 
      double tgtRange = shooterLocation.distanceFrom(theTarget.getTargetLocation()); 
      double tof = tgtRange/meanProjectileVelocity; 
      return firingTime + tof; 
   } 
 
   public int getNumberRounds(){return numberRounds;} 
 
   public boolean hasRounds(){return (numberRounds>0);} 
 
   public void decrementRounds(int roundsFired){ 
      numberRounds -= roundsFired; 
   } 
 
   public void incrementRounds(int resupply){ 
      numberRounds+=resupply; 
   } 
 
   public Coordinate getSingleShotLocation(Coordinate theTarget){ 
      double tgtRange = shooterLocation.distanceFrom(theTarget); 
      double xVec = (theTarget).getXCoord()-shooterLocation.getXCoord(); 
      double angle = Math.acos(xVec/tgtRange); 
      double deflectionError = tgtRange/1000*shotDeflError.generate(); 
      double rangeError = shotRangeError.generate(); 
      double deltaX = Math.cos(angle)*rangeError + Math.sin(angle)*deflectionError; 
      double deltaY = Math.sin(angle)*rangeError - Math.cos(angle)*deflectionError; 
      Coordinate shotLocation = (theTarget).incrementBy(new Coordinate(deltaX,deltaY)); 
      return new Coordinate(shotLocation); 
   } 
 
   public int getBurstRadius(){return burstRadius;} 
 
   public String getPlatformType(){return new String(platformType);} 
 
   public void reset(){ 
      super.reset(); 
      numberRounds = startNumberRounds; 
   } 
 
   public String toString(){ 
    return "Shooter is: " + platformType + ", its location is: " + 
        this.getShooterLocation() + ", shooter range is: " + this.getShooterRange() + 
        ", shooter PER is: " + this.getPER() + 
        ", shooter PED is: " + this.getPED() + 
        ", shooter has: " + this.getNumberRounds() + " rounds remaining."; 
   } 
 
} 
 

4. Target 
/** 
 * Juan K. Ulloa <BR> 
 * Thesis: FSST 
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 * January 13, 2001 
 * 
 * <P> This class creates an instance of a target that stores the 
 *     time that the call for fire (CFF) is initially made. 
 *     This time is the arrival time of the target. 
**/ 
 
package fsst; 
import simkit.*; 
import simkit.data.*; 
import simkit.smd.*; 
import java.util.*; 
 
public class Target{ 
 
// instance variables 
   private BattleFieldData battleField; 
   private TargetState state; 
   private double arrivalTime; 
   private Coordinate targetLocation; 
   private String targetType; 
   private String mission; 
   private int salvoSize; 
   private int closeCalls; 
   private int hits; 
   private int hitsNeeded; 
   private int hitsToDestroy; 
   private int hitsToNeutralize; 
   private int closeCallsToSuppress; 
   private double collateralDamageRadius; 
   private double collateralDamagePercentage; 
   private Random r; 
 
// constructor methods 
   public Target(){ 
    arrivalTime = Schedule.getSimTime(); 
   } 
 
   public Target(AO theBox, BattleFieldData theBattleField){ 
      state = TargetState.UNSCATHED; 
    arrivalTime = Schedule.getSimTime(); 
      targetLocation = new Coordinate(theBox.getRandomLocation()); 
      battleField = theBattleField; 
      targetType = battleField.getTargetType(); 
      mission = battleField.getFireMissionType(); 
      salvoSize = battleField.getSalvoSize(targetType,mission); 
      hitsToDestroy = battleField.getDestroy(targetType); 
      hitsToNeutralize = battleField.getNeutralize(targetType); 
      closeCallsToSuppress = battleField.getSuppress(targetType); 
      hitsNeeded = battleField.getHitsNeeded(targetType,mission); 
      collateralDamageRadius = battleField.getCollateralDamageRadius(); 
      collateralDamagePercentage = battleField.getCollateralDamagePercent(); 
   } 
 
// class methods 
   public double getArrivalTime(){return arrivalTime;} 
 
   public String getTargetState(){return state.toString();} 
 
   public Coordinate getTargetLocation(){return new Coordinate(targetLocation);} 
 
   public String getTargetType(){return new String(targetType);} 
 
   public String getMission(){return new String(mission);} 
 
   public int getSalvoSize(){return salvoSize;} 
 
   public int getHitsNeeded(){return hitsNeeded;} 
 
   public int getHits(){return hits;} 
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   public int getCloseCalls(){return closeCalls;} 
 
   public boolean isFireMissionSuccessful(Shooter theShooter){ 
      int burstRadius = theShooter.getBurstRadius(); 
      double missedBy; 
      for(int i=0;i<salvoSize;i++){ 
         missedBy = (theShooter.getSingleShotLocation(new Coordinate(targetLocation))). 
           distanceFrom(targetLocation); 
         if (missedBy <= burstRadius){ 
            hits++; 
         } 
         if (missedBy > battleField.getCollateralDamageRadius()){ 
            if (battleField.getRandomNumber()<battleField.getCollateralDamagePercent()){ 
               battleField.increaseNumberCollateralDamageCausingRounds(); 
            } 
         } 
         if ((missedBy <= (2*burstRadius))&&(mission.equals("Suppress"))){ 
            closeCalls++; 
         } 
      } 
      setState(); 
      if (mission.equals("Suppress")){ 
         return (closeCalls>=hitsNeeded); 
      } 
      else { 
         return (hits>=hitsNeeded); 
      } 
   } 
 
   public void setState(){ 
      if (closeCalls>=closeCallsToSuppress){ 
         state = TargetState.SUPPRESSED; 
      } 
      if (hits>=hitsToNeutralize){ 
         state = TargetState.NEUTRALIZED; 
      } 
      if (hits>=hitsToDestroy){ 
         state = TargetState.DESTROYED; 
      } 
   } 
 
   public void setSalvoSize(int newSalvoSize){ 
      salvoSize = newSalvoSize; 
   } 
 
   public String toString(){ 
    return getTargetType() + " arrived at " + getArrivalTime() + ",at location: " + 
        this.getTargetLocation() + ".  The mission was to: " + this.getMission() + 
        ".  The target is currently " + state.toString(); 
   } 
 
} 

 
5. TargetState 

/** 
 * Juan K. Ulloa <BR> 
 * Thesis: FSST 
 * January 13, 2001 
 * 
 * <P> This class tracks the state of the target being engaged. 
 * 
**/ 
 
package fsst; 
 
public class TargetState{ 
 
   public static final TargetState UNSCATHED= new TargetState("Unscathed"); 
   public static final TargetState SUPPRESSED = new TargetState("Suppressed"); 
   public static final TargetState NEUTRALIZED = new TargetState("Neutralized"); 
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   public static final TargetState DESTROYED = new TargetState("Destroyed"); 
 
   private String state; 
 
   protected TargetState(String theState){ 
      state = new String(theState); 
   } 
 
   public String toString(){ 
      return state; 
   } 
 
} 

 
6. TargetArrivalProcess 

/** 
 * Juan K. Ulloa <BR> 
 * Thesis: FSST 
 * January 12, 2001 
 * 
 * <P> This class simulates the arrival process of targets. 
 * 
**/ 
 
package fsst; 
import simkit.*; 
import simkit.data.*; 
 
public class TgtArrivalProcess extends SimEntityBase { 
 
// instance variables 
   private int numberArrivals; 
   private RandomVariate arrivalTimeGenerator; 
 
// constructor methods 
   public TgtArrivalProcess(String distribution, Object[] theParameters, long seed){ 
      arrivalTimeGenerator = 
        RandomFactory.getRandomVariate(distribution,theParameters,seed); 
   } 
 
// instance methods 
   public String getDistribution(){return arrivalTimeGenerator.getClass().getName();} 
 
   public void setParameters(Object[] newParameters){ 
      arrivalTimeGenerator.setParameters(newParameters); 
   } 
 
   public Object[] getParameters(){return arrivalTimeGenerator.getParameters();} 
 
   public int getNumberArrivals(){return numberArrivals;} 
 
   public void doRun(){ 
      double temp = arrivalTimeGenerator.generate(); 
      if (temp<0.0){ 
         temp = 0.0; 
      } 
      numberArrivals = 0; 
      waitDelay("TargetArrival",temp); 
   } 
 
   public void doTargetArrival(){ 
      double temp = arrivalTimeGenerator.generate(); 
      if (temp<0.0){ 
         temp = 0.0; 
      } 
      numberArrivals++; 
      waitDelay("TargetArrival",temp); 
   } 
 
   public void reset(){ 
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      super.reset(); 
      numberArrivals = 0; 
   } 
 
} 
 

7. TargetServer2 
/** 
 * Juan K. Ulloa <BR> 
 * Thesis: FSST 
 * January 19, 2001 
 * 
 * <P> This class implements the process of firing targets. 
 * 
**/ 
 
package fsst; 
import simkit.*; 
import simkit.data.*; 
import java.util.*; 
 
public class TgtServer2 extends SimEntityBase{ 
 
// instance variables 
 // parameters 
   private int maxNumberShooters; 
 // state variables 
   private Vector queue = new Vector(); 
   private int queueSize; 
   private Vector shooters; 
   private int numberMissionRepeats; 
   private int numberAvailableShooters; 
   private int numberFireMissionsServed; 
   private int numberMissionsRejected; 
   private int numberSuccessfulMissions; 
   private int numberUnsuccessfulMissions; 
   private AO box; 
   private BattleFieldData battleFieldData; 
   private double[] weights; 
 
// constructor methods 
   public TgtServer2(Vector theShooters, AO theBox, BattleFieldData theBattleFieldData, 
     double[] theWeights){ 
      battleFieldData = new BattleFieldData(theBattleFieldData); 
      box = new AO(theBox); 
    setNumberShooters(theShooters.size()); 
      shooters = (Vector)theShooters.clone(); 
      numberAvailableShooters = maxNumberShooters; 
      for(int i=0;i<shooters.size();i++){ 
         queue.add(new LinkedList()); 
      } 
      weights = theWeights; 
   } 
 
// instance methods 
   public void doTargetArrival(){ 
    Target newFireMission = new Target(box,battleFieldData); 
      Vector whoIsInRange = new Vector(); 
      int firer; 
      for(int i=0;i<shooters.size();i++){ 
         if (((Shooter)shooters.get(i)).inRange(newFireMission)){ 
            whoIsInRange.add(new Integer(i)); 
         } 
      } 
      if (whoIsInRange.size()>0) { 
         firer = getShooter1(whoIsInRange,newFireMission); 
         if (firer>=0){ 
            ((LinkedList)queue.get(firer)).add(newFireMission); 
            firePropertyChange("tgtsInQueue",queueSize,++queueSize); 
          if (((LinkedList)queue.get(firer)).size() == 1){ 
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               waitDelay("FireMission",0.0,new Integer(firer)); 
          } 
         } 
         else{ 
            firePropertyChange("numberMissionsRejected",numberMissionsRejected, 
              ++numberMissionsRejected); 
         } 
      } 
      else { 
         firePropertyChange("numberMissionsRejected",numberMissionsRejected, 
           ++numberMissionsRejected); 
      } 
   } 
 
   public void doFireMission(Integer theFirer){ 
      int firer = theFirer.intValue(); 
    Target thisFireMission = (Target)((LinkedList)queue.get(firer)).getFirst(); 
      double thisTimeInQueue = Schedule.getSimTime() - thisFireMission.getArrivalTime(); 
      Vector parameters = new Vector(); 
      parameters.add(thisFireMission); 
      parameters.add(theFirer); 
    firePropertyChange("tgtsInQueue",queueSize,--queueSize); 
    firePropertyChange("numberAvailableShooters",numberAvailableShooters, 
        --numberAvailableShooters); 
      if((((Shooter)shooters.get(firer)).getNumberRounds()< 
        thisFireMission.getSalvoSize())&&(((Shooter)shooters.get(firer)).hasRounds())){ 
         thisFireMission.setSalvoSize(((Shooter)shooters.get(firer)).getNumberRounds()); 
      } 
// Check to see if shooter has enough rounds left to fire 
      if (!((Shooter)shooters.get(firer)).hasRounds()){ 
       waitDelay("FireMissionNeverFired",0.0,parameters); 
      } 
   // mission successful 
      else if (thisFireMission.isFireMissionSuccessful((Shooter)shooters.get(firer))) { 
         ((Shooter)shooters.get(firer)).decrementRounds(thisFireMission.getSalvoSize()); 
         firePropertyChange("fireMissionQueueTime",null,new 
Double(thisTimeInQueue)); 
         parameters.add(new Boolean(true)); 
        waitDelay("EndFireMission",((Shooter)shooters.get(firer)). 
           getServiceTime(thisFireMission),parameters); 
      } 
   // mission unsuccessful and either the target flees or shooter out of ammo 
      else if ((battleFieldData.didFlee())|| 
        (!((Shooter)shooters.get(firer)).hasRounds())){ 
         ((Shooter)shooters.get(firer)).decrementRounds(thisFireMission.getSalvoSize()); 
         firePropertyChange("fireMissionQueueTime",null,new 
Double(thisTimeInQueue)); 
         parameters.add(new Boolean(false)); 
         waitDelay("EndFireMission",((Shooter)shooters.get(firer)). 
           getServiceTime(thisFireMission),parameters); 
      } 
   // mission unsucccessful, but target still available and shooter has ammo 
      else { 
         firePropertyChange("numberMissionRepeats",numberMissionRepeats, 
           ++numberMissionRepeats); 
         waitDelay("RepeatFireMission",((Shooter)shooters.get(firer)). 
           getServiceTime(thisFireMission),parameters); 
      } 
   } 
 
   public void doRepeatFireMission(Vector theParameters){ 
      Target thisFireMission = (Target)theParameters.get(0); 
      int firer = ((Integer)theParameters.get(1)).intValue(); 
      double thisTimeInQueue = Schedule.getSimTime() - thisFireMission.getArrivalTime(); 
      if((((Shooter)shooters.get(firer)).getNumberRounds()< 
        thisFireMission.getSalvoSize())&&(((Shooter)shooters.get(firer)).hasRounds())){ 
         thisFireMission.setSalvoSize(((Shooter)shooters.get(firer)).getNumberRounds()); 
      } 
// Check to see if shooter has enough rounds left to fire the mission 
      if (!((Shooter)shooters.get(firer)).hasRounds()){ 
       firePropertyChange("fireMissionQueueTime",null,new Double(thisTimeInQueue)); 
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         theParameters.add(new Boolean(false)); 
       waitDelay("EndFireMission",0.0,theParameters); 
         } 
   // mission successful 
      else if (thisFireMission.isFireMissionSuccessful((Shooter)shooters.get(firer))) { 
         ((Shooter)shooters.get(firer)).decrementRounds(thisFireMission.getSalvoSize()); 
       firePropertyChange("fireMissionQueueTime",null,new Double(thisTimeInQueue)); 
         theParameters.add(new Boolean(true)); 
        waitDelay("EndFireMission",((Shooter)shooters.get(firer)). 
           getRepeatServiceTime(thisFireMission),theParameters); 
      } 
   // mission unsuccessful and (target flees or shooter out of ammo) 
      else if ((battleFieldData.didFlee())|| 
        (!((Shooter)shooters.get(firer)).hasRounds())){ 
         ((Shooter)shooters.get(firer)).decrementRounds(thisFireMission.getSalvoSize()); 
       firePropertyChange("fireMissionQueueTime",null,new Double(thisTimeInQueue)); 
         theParameters.add(new Boolean(false)); 
         waitDelay("EndFireMission",((Shooter)shooters.get(firer)). 
           getRepeatServiceTime(thisFireMission),theParameters); 
      } 
   // mission unsuccessful and target still available 
      else{ 
         ((Shooter)shooters.get(firer)).decrementRounds(thisFireMission.getSalvoSize()); 
         waitDelay("RepeatFireMission",((Shooter)shooters.get(firer)). 
           getRepeatServiceTime(thisFireMission),theParameters); 
      } 
   } 
 
   public void doEndFireMission(Vector theParameters){ 
      Target theFireMission = (Target)theParameters.get(0); 
      int firer = ((Integer)theParameters.get(1)).intValue(); 
      boolean success = ((Boolean)theParameters.get(2)).booleanValue(); 
    double timeInSystem = Schedule.getSimTime()-theFireMission.getArrivalTime(); 
      ((LinkedList)queue.get(firer)).removeFirst(); 
      if (success){ 
         firePropertyChange("numberSuccessfulMissions",numberSuccessfulMissions, 
           ++numberSuccessfulMissions); 
      } 
      else{ 
         firePropertyChange("numberUnsuccessfulMissions",numberUnsuccessfulMissions, 
           ++numberUnsuccessfulMissions); 
      } 
    firePropertyChange("totalFireMissionTime",null,new Double(timeInSystem)); 
    firePropertyChange("numberMissionsFired",numberFireMissionsServed, 
        ++numberFireMissionsServed); 
    firePropertyChange("numberAvailableShooters",numberAvailableShooters, 
        ++numberAvailableShooters); 
      if (((LinkedList)queue.get(firer)).size() > 0){ 
         waitDelay("FireMission",0.0,new Integer(firer)); 
    } 
   } 
 
   public void doFireMissionNeverFired(Vector theParameters){ 
      Target theFireMission = (Target)theParameters.get(0); 
      int firer = ((Integer)theParameters.get(1)).intValue(); 
      for(int i=0;i<((LinkedList)queue.get(firer)).size();i++){ 
         firePropertyChange("numberMissionsRejected",numberMissionsRejected, 
           ++numberMissionsRejected); 
      } 
      ((LinkedList)queue.get(firer)).clear(); 
   } 
 
   public int getNumberShooters(){return maxNumberShooters;} 
 
   public void setNumberShooters(int numberShooters){ 
    maxNumberShooters = numberShooters; 
   } 
 
   public int getNumberServed(){return numberFireMissionsServed;} 
 
   public int getNumberInQueue(){return queueSize;} 
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   public void addShooter(Shooter newShooter){ 
      shooters.add(newShooter); 
      queue.add(new LinkedList()); 
    firePropertyChange("numberAvailableShooters",numberAvailableShooters, 
        ++numberAvailableShooters); 
      maxNumberShooters++; 
   } 
 
   public void removeShooter(int shooterNumber){ 
      int numberMissions = ((LinkedList)queue.get(shooterNumber)).size(); 
      for(int i=0;i<numberMissions;i++){ 
         // add the old targets 
      } 
      shooters.remove(shooterNumber); 
      queue.remove(shooterNumber); 
    firePropertyChange("numberAvailableShooters",numberAvailableShooters, 
        --numberAvailableShooters); 
      maxNumberShooters--; 
   } 
 
   public int getShooter(Vector inRangeShooters, Target thisFireMission){ 
      int firer = 0; 
      int temp; 
      Shooter thisShooter; 
      Shooter bestShooterSoFar; 
      double thisShooterDistance; 
      double bestShooterSoFarDistance; 
      Vector inRangeFA = new Vector(); 
      Vector inRangeNSFS = new Vector(); 
   // create vector of inRange shooters that have enough ammo and are FA 
      for(int i=0;i<inRangeShooters.size();i++){ 
         temp = ((Integer)inRangeShooters.get(i)).intValue(); 
         thisShooter = (Shooter)shooters.get(temp); 
         if (thisShooter.getPlatformType().equals("FieldArtillery")&& 
           (thisShooter.getNumberRounds()>=thisFireMission.getSalvoSize())){ 
            inRangeFA.add(new Integer(temp)); 
         } 
         if(thisShooter.getPlatformType().equals("NSFS")&& 
           (thisShooter.getNumberRounds()>=thisFireMission.getSalvoSize())){ 
            inRangeNSFS.add(new Integer(temp)); 
         } 
      } 
         // Use the FA assets first 
      if (inRangeFA.size()>0){ 
         firer = ((Integer)inRangeFA.get(0)).intValue(); 
         for(int i=0;i<inRangeFA.size();i++){ 
            temp = ((Integer)inRangeFA.get(i)).intValue(); 
            thisShooter = (Shooter)shooters.get(temp); 
            thisShooterDistance = (thisShooter.getShooterLocation()). 
              distanceFrom(thisFireMission.getTargetLocation()); 
            bestShooterSoFar = (Shooter)shooters.get(firer); 
            bestShooterSoFarDistance = (bestShooterSoFar.getShooterLocation()). 
              distanceFrom(thisFireMission.getTargetLocation()); 
   // use asset enough rounds and with shortest queue 
            if ((((LinkedList)queue.get(temp)).size()<= 
              ((LinkedList)queue.get(firer)).size())){ 
               firer = temp; 
            } 
   // use asset with lowest PER if all else is the same 
            else if((((LinkedList)queue.get(temp)).size()== 
              ((LinkedList)queue.get(firer)).size())&& 
              (thisShooter.getPER()<bestShooterSoFar.getPER())){ 
               firer = temp; 
            } 
   // use asset that is closest if all else is the same 
            else if((((LinkedList)queue.get(temp)).size()== 
              ((LinkedList)queue.get(firer)).size())&& 
              (thisShooter.getPER()<bestShooterSoFar.getPER())&& 
              (thisShooterDistance<bestShooterSoFarDistance)){ 
               firer = temp; 
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            } 
         } 
         return firer; 
      } 
         // Use the NSFS assets if no FA assets available 
      if (inRangeNSFS.size()>0){ 
         firer = ((Integer)inRangeNSFS.get(0)).intValue(); 
         for(int i=0;i<inRangeNSFS.size();i++){ 
            temp = ((Integer)inRangeNSFS.get(i)).intValue(); 
            thisShooter = (Shooter)shooters.get(temp); 
            thisShooterDistance = (thisShooter.getShooterLocation()). 
              distanceFrom(thisFireMission.getTargetLocation()); 
            bestShooterSoFar = (Shooter)shooters.get(firer); 
            bestShooterSoFarDistance = (bestShooterSoFar.getShooterLocation()). 
              distanceFrom(thisFireMission.getTargetLocation()); 
   // use asset enough rounds and with shortest queue 
            if ((((LinkedList)queue.get(temp)).size()<= 
              ((LinkedList)queue.get(firer)).size())){ 
               firer = temp; 
            } 
   // use asset with lowest PER if all else is the same 
            else if((((LinkedList)queue.get(temp)).size()== 
              ((LinkedList)queue.get(firer)).size())&& 
              (thisShooter.getPER()<bestShooterSoFar.getPER())){ 
               firer = temp; 
            } 
   // use asset that is closest if all else is the same 
            else if((((LinkedList)queue.get(temp)).size()== 
              ((LinkedList)queue.get(firer)).size())&& 
              (thisShooter.getPER()<bestShooterSoFar.getPER())&& 
              (thisShooterDistance<bestShooterSoFarDistance)){ 
               firer = temp; 
            } 
         } 
         return firer; 
      } 
   // if no firers have enough ammo, use asset with the most ammo and reset salvoSize 
   // to number of rounds available 
      firer = -1; 
      for(int i=0;i<inRangeShooters.size();i++){ 
         temp = ((Integer)inRangeShooters.get(i)).intValue(); 
         thisShooter = (Shooter)shooters.get(temp); 
         if (firer>=0){ 
            bestShooterSoFar = (Shooter)shooters.get(firer); 
         } 
         else{ 
            bestShooterSoFar = (Shooter)shooters.get(temp); 
         } 
         if ((thisShooter.hasRounds())&& 
           (thisShooter.getNumberRounds()>bestShooterSoFar.getNumberRounds())){ 
            firer = temp; 
            thisFireMission.setSalvoSize(thisShooter.getNumberRounds()); 
         } 
      } 
      return firer; 
   } 
 
   public int getShooter1(Vector inRangeShooters, Target thisFireMission){ 
      Shooter thisShooter; 
      Shooter bestShooterSoFar; 
      Vector inRangeWithEnoughAmmo = new Vector(); 
      Vector inRangeNotEnoughAmmo = new Vector(); 
      Vector weightedShooters; 
      double[] theValues; 
      double shooterWorth; 
      double bestShooter = 0.0; 
      int temp; 
      int firer = -1; 
   // create vector of inRange shooters that have enough ammo 
      for(int i=0;i<inRangeShooters.size();i++){ 
         temp = ((Integer)inRangeShooters.get(i)).intValue(); 
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         thisShooter = (Shooter)shooters.get(temp); 
         if (thisShooter.getNumberRounds()>=thisFireMission.getSalvoSize()){ 
            inRangeWithEnoughAmmo.add(new Integer(temp)); 
         } 
         else{ 
            inRangeNotEnoughAmmo.add(new Integer(temp)); 
         } 
      } 
      if (inRangeWithEnoughAmmo.size()>0){ 
         weightedShooters = new Vector(); 
         theValues = getShooterBestWorstValues(inRangeWithEnoughAmmo,thisFireMission); 
//{bestRange,worstRange,bestPER,worstPER,bestNumberRounds,worstNumberRounds}; 
         for(int i=0;i<inRangeWithEnoughAmmo.size();i++){ 
            temp = ((Integer)inRangeWithEnoughAmmo.get(i)).intValue(); 
            thisShooter = (Shooter)shooters.get(temp); 
            double range = thisShooter.getShooterLocation(). 
              distanceFrom(thisFireMission.getTargetLocation()); 
            double per = thisShooter.getPER(); 
            int numberRounds = thisShooter.getNumberRounds(); 
      // shooter worth is function of range, PER, number rounds, and platform type 
            shooterWorth = (range-theValues[1])/(theValues[0]-theValues[1])*weights[0]+ 
              (per-theValues[3])/(theValues[2]-theValues[3])*weights[1]+ 
              (numberRounds-theValues[5])/(theValues[4]-theValues[5])*weights[2]; 
            if (thisShooter.getPlatformType().equals("FieldArtillery")){ 
               shooterWorth += weights[3]; 
            } 
            if (thisShooter.getPlatformType().equals("NSFS")){ 
               shooterWorth += weights[4]; 
            } 
            weightedShooters.add(new Double(shooterWorth)); 
         } 
         for(int i=0;i<weightedShooters.size();i++){ 
            shooterWorth = ((Double)weightedShooters.get(i)).doubleValue(); 
//            System.out.println(shooterWorth); 
            if (shooterWorth>bestShooter){ 
               firer = ((Integer)inRangeWithEnoughAmmo.get(i)).intValue(); 
               bestShooter = shooterWorth; 
            } 
         } 
         return firer; 
      } 
      else{ 
         for(int i=0;i<inRangeNotEnoughAmmo.size();i++){ 
            temp = ((Integer)inRangeShooters.get(i)).intValue(); 
            thisShooter = (Shooter)shooters.get(temp); 
            if (firer>=0){ 
               bestShooterSoFar = (Shooter)shooters.get(firer); 
            } 
            else{ 
               bestShooterSoFar = (Shooter)shooters.get(temp); 
            } 
            if(thisShooter.getNumberRounds()>bestShooterSoFar.getNumberRounds()){ 
               firer = temp; 
               thisFireMission.setSalvoSize(thisShooter.getNumberRounds()); 
            } 
         } 
         return firer; 
      } 
   } 
 
   public int getNumberRoundsCausingCollateralDamage(){ 
      return battleFieldData.getNumberCollateralDamageCausingRounds(); 
   } 
 
   public double[] getShooterBestWorstValues(Vector theShooters, Target theTarget){ 
      int temp; 
      double bestRange = Double.MAX_VALUE; 
      double worstRange = 0.0; 
      double bestPER = Double.MAX_VALUE; 
      double worstPER = 0.0; 
      int bestNumberRounds = 0; 
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      int worstNumberRounds = Integer.MAX_VALUE; 
      Shooter currentShooter; 
      for(int i=0;i<theShooters.size();i++){ 
         temp = ((Integer)theShooters.get(i)).intValue(); 
         currentShooter = (Shooter)shooters.get(temp); 
         if ((currentShooter.getShooterLocation()). 
           distanceFrom(theTarget.getTargetLocation()) > worstRange){ 
            worstRange = (currentShooter.getShooterLocation()). 
              distanceFrom(theTarget.getTargetLocation()); 
         } 
         if ((currentShooter.getShooterLocation()). 
           distanceFrom(theTarget.getTargetLocation()) < bestRange){ 
            bestRange = (currentShooter.getShooterLocation()). 
              distanceFrom(theTarget.getTargetLocation()); 
         } 
         if (currentShooter.getPER()>worstPER){ 
            worstPER = currentShooter.getPER(); 
         } 
         if (currentShooter.getPER()<bestPER){ 
            bestPER = currentShooter.getPER(); 
         } 
         if (currentShooter.getNumberRounds()>bestNumberRounds){ 
            bestNumberRounds = currentShooter.getNumberRounds(); 
         } 
         if (currentShooter.getNumberRounds()<worstNumberRounds){ 
            worstNumberRounds = currentShooter.getNumberRounds(); 
         } 
      } 
      if (worstRange==bestRange){ 
         worstRange+=0.1; 
      } 
      if (worstPER==bestPER){ 
         worstPER+=0.1; 
      } 
      if (worstNumberRounds==bestNumberRounds){ 
         worstNumberRounds-=0.1; 
      } 
      return new double[]{bestRange,worstRange,bestPER, 
        worstPER,bestNumberRounds,worstNumberRounds}; 
   } 
 
   public void reset(){ 
    super.reset(); 
      numberMissionRepeats = 0; 
      firePropertyChange("numberMissionRepeats",Integer.MIN_VALUE,numberMissionRepeats); 
    numberFireMissionsServed = 0; 
   
 firePropertyChange("numberMissionsFired",Integer.MIN_VALUE,numberFireMissionsServe
d); 
      numberUnsuccessfulMissions = 0; 
      firePropertyChange("numberUnsuccessfulMissions",Integer.MIN_VALUE, 
        numberUnsuccessfulMissions); 
      numberSuccessfulMissions = 0; 
      firePropertyChange("numberSuccessfulMissions",Integer.MIN_VALUE, 
        numberSuccessfulMissions); 
      numberMissionsRejected = 0; 
      firePropertyChange("numberMissionsRejected",Integer.MIN_VALUE, 
        numberMissionsRejected); 
    numberAvailableShooters = maxNumberShooters; 
    firePropertyChange("numberAvailableShooters",Integer.MIN_VALUE, 
        numberAvailableShooters); 
    queue.clear(); 
      for(int i=0;i<shooters.size();i++){ 
         queue.add(new LinkedList()); 
      } 
    firePropertyChange("tgtsInQueue",Integer.MIN_VALUE,queue.size()); 
    firePropertyChange("fireMissionQueueTime",null,new Double(0.0)); 
    firePropertyChange("totalFireMissionTime",null,new Double(0.0)); 
      battleFieldData.resetCollateralDamageCausingRounds(); 
   } 
} 
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B. MAIN METHODS 

1. FSST50Replications.java 

/** 
 * Juan K. Ulloa <BR> 
 * Thesis: FSST 
 * January 19, 2001 
 * 
 * <P> 
 * 
**/ 
 
package fsst; 
import simkit.*; 
import simkit.data.*; 
import simkit.smd.*; 
import java.util.*; 
import java.io.*; 
import java.text.DecimalFormat; 
 
public class FSST50Replications{ 
 
// main method 
   public static final int NUMREPLICATIONS = 50; 
   public static void main(String[] args){ 
      DecimalFormat deci = new DecimalFormat(" 0.0000;-0.0000"); 
    Properties props = new Properties(); 
       try { 
     props.load(new FileInputStream(args[0])); 
       } 
       catch (FileNotFoundException e) {System.err.println(e);} 
       catch (IOException e) {System.err.println(e);} 
 
         // get COA data and CA 
    String theCOA = props.get("COA").toString(); 
      double ca = Double.parseDouble(props.get("theCA").toString()); 
         // get AO data 
    double xLowerLeft = Double.parseDouble(props.get("xLowerLeft").toString()); 
    double yLowerLeft = Double.parseDouble(props.get("yLowerLeft").toString()); 
    double xUpperRight = Double.parseDouble(props.get("xUpperRight").toString()); 
    double yUpperRight= Double.parseDouble(props.get("yUpperRight").toString()); 
    String xDist = props.get("xDist").toString(); 
    double xDistA = Double.parseDouble(props.get("xDistA").toString()); 
 double xDistB = Double.parseDouble(props.get("xDistB").toString()); 
 String yDist = props.get("yDist").toString(); 
    double yDistMean = Double.parseDouble(props.get("yDistMean").toString()); 
 
         // instantiate AO 
      Coordinate lowerLeft = new Coordinate(xLowerLeft,yLowerLeft); 
      Coordinate upperRight = new Coordinate(xUpperRight,yUpperRight); 
      Object[] xDistParameters = new Object[]{new Double(xDistA),new Double(xDistB)}; 
      Object[] yDistParameters = new Object[]{new Double(yDistMean)}; 
      AO box = new AO(lowerLeft,upperRight,xDist,xDistParameters,yDist,yDistParameters); 
 
       // get the stop data 
    String stopEvent = props.get("stopEvent").toString(); 
    int stopEventCount = Integer.parseInt(props.get("stopEventCount").toString()); 
 
       // get the ArrivalProcess data 
    String interarrivalDistribution = props.get("arrivalDistribution").toString(); 
    double meanInterarrivalTime = 
      Double.parseDouble(props.get("meanInterarrival").toString()); 
    int arrivalStream = Integer.parseInt(props.get("arrivalStream").toString()); 
 
       // instantiate the arrivalProcess 
    TgtArrivalProcess arrival = new TgtArrivalProcess(interarrivalDistribution, 
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      new Object[] {new 
Double(meanInterarrivalTime)},RandomStream.STREAM[arrivalStream]); 
 
       // get the Shooter data 
      int numberShooters = Integer.parseInt(props.get("numberShooters").toString()); 
    double meanProjectileVelocity = 
        Double.parseDouble(props.get("meanProjectileVelocity").toString()); 
      String[] platformType = new String[numberShooters]; 
      String[] acquireServiceDistribution = new String[numberShooters]; 
      double[] meanAcquireInterservice = new double[numberShooters]; 
      double[] sigmaAcquire = new double[numberShooters]; 
      String[] firingServiceDistribution = new String[numberShooters]; 
      double[] meanFiringInterservice = new double[numberShooters]; 
      double[] sigmaFiring = new double[numberShooters]; 
      double[] maxRateOfFire = new double[numberShooters]; 
      double[] thePER = new double[numberShooters]; 
      double[] thePED = new double[numberShooters]; 
      double[] shooterXCoord = new double[numberShooters]; 
      double[] shooterYCoord = new double[numberShooters]; 
      int[] acquireServerStream = new int[numberShooters]; 
      int[] firingServerStream = new int[numberShooters]; 
      int[] numberRounds = new int[numberShooters]; 
      int[] numberGuns = new int[numberShooters]; 
      int[] shooterRange = new int[numberShooters]; 
      int[] burstRadius = new int[numberShooters]; 
      Shooter[] aShooter = new Shooter[numberShooters]; 
 
      for(int i=0;i<numberShooters;i++){ 
         platformType[i] = props.get("platformType"+(i+1)).toString(); 
       acquireServiceDistribution[i] = 
           props.get("acquireServiceDistribution"+(i+1)).toString(); 
       meanAcquireInterservice[i] = 
           Double.parseDouble(props.get("meanAcquireInterservice"+(i+1)).toString()); 
       sigmaAcquire[i] = Double.parseDouble(props.get("sigmaAcquire"+(i+1)).toString()); 
       firingServiceDistribution[i] = 
           props.get("firingServiceDistribution"+(i+1)).toString(); 
       meanFiringInterservice[i] = 
           Double.parseDouble(props.get("meanFiringInterservice"+(i+1)).toString()); 
       sigmaFiring[i] = Double.parseDouble(props.get("sigmaFiring"+(i+1)).toString()); 
         maxRateOfFire[i] = 
           Double.parseDouble(props.get("maxRateOfFire"+(i+1)).toString()); 
       thePER[i] = Double.parseDouble(props.get("thePER"+(i+1)).toString()); 
         thePED[i] = Double.parseDouble(props.get("thePED"+(i+1)).toString()); 
         shooterXCoord[i] = 
Double.parseDouble(props.get("shooterXCoord"+(i+1)).toString()); 
         shooterYCoord[i] = 
Double.parseDouble(props.get("shooterYCoord"+(i+1)).toString()); 
       acquireServerStream[i] = 
           Integer.parseInt(props.get("acquireServerStream"+(i+1)).toString()); 
       firingServerStream[i] = 
           Integer.parseInt(props.get("firingServerStream"+(i+1)).toString()); 
       numberRounds[i] = Integer.parseInt(props.get("numberRounds"+(i+1)).toString()); 
       numberGuns[i] = Integer.parseInt(props.get("numberGuns"+(i+1)).toString()); 
         shooterRange[i] = Integer.parseInt(props.get("shooterRange"+(i+1)).toString()); 
         burstRadius[i] = Integer.parseInt(props.get("burstRadius"+(i+1)).toString()); 
            // instantiate the shooters 
         aShooter[i] = new Shooter(new Coordinate(shooterXCoord[i],shooterYCoord[i]), 
           shooterRange[i],thePER[i],thePED[i],acquireServiceDistribution[i], 
           new Object[] {new Double(meanAcquireInterservice[i]), 
           new Double(sigmaAcquire[i])},firingServiceDistribution[i],new Object[] 
           {new Double(meanFiringInterservice[i]),new Double(sigmaFiring[i])}, 
           maxRateOfFire[i],RandomStream.STREAM[firingServerStream[i]], 
           RandomStream.STREAM[acquireServerStream[i]],numberRounds[i], 
           burstRadius[i],meanProjectileVelocity, platformType[i],numberGuns[i]); 
      } 
 
         // instantiate the BattleFieldData 
      double fleeProbability = 
Double.parseDouble(props.get("fleeProbability").toString()); 
      int fleeStream = Integer.parseInt(props.get("fleeStream").toString()); 
      double collateralDamageRadius = 
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        Double.parseDouble(props.get("collateralDamageRadius").toString()); 
      double collateralDamagePercent = 
        Double.parseDouble(props.get("collateralDamagePercent").toString()); 
      double percentArmor = 
        Double.parseDouble(props.get("percentArmor").toString()); 
      double percentInfantryInOpen = 
        Double.parseDouble(props.get("percentInfantryInOpen").toString()); 
      double percentInfantryDugIn = 
        Double.parseDouble(props.get("percentInfantryDugIn").toString()); 
      double percentArmoredPC = 
        Double.parseDouble(props.get("percentArmoredPC").toString()); 
      double percentLightSkinVehicle = 
        Double.parseDouble(props.get("percentLightSkinVehicle").toString()); 
 
      int destroyArmor = Integer.parseInt(props.get("destroyArmor").toString()); 
      int destroyArmorSalvo = 
Integer.parseInt(props.get("destroyArmorSalvo").toString()); 
      int neutralizeArmor = Integer.parseInt(props.get("neutralizeArmor").toString()); 
      int neutralizeArmorSalvo = 
Integer.parseInt(props.get("neutralizeArmorSalvo").toString()); 
      int suppressArmor = Integer.parseInt(props.get("suppressArmor").toString()); 
      int suppressArmorSalvo = 
Integer.parseInt(props.get("suppressArmorSalvo").toString()); 
 
      int destroyIIO = Integer.parseInt(props.get("destroyIIO").toString()); 
      int destroyIIOSalvo = Integer.parseInt(props.get("destroyIIOSalvo").toString()); 
      int neutralizeIIO = Integer.parseInt(props.get("neutralizeIIO").toString()); 
      int neutralizeIIOSalvo = 
Integer.parseInt(props.get("neutralizeIIOSalvo").toString()); 
      int suppressIIO = Integer.parseInt(props.get("suppressIIO").toString()); 
      int suppressIIOSalvo = Integer.parseInt(props.get("suppressIIOSalvo").toString()); 
 
      int destroyIDI = Integer.parseInt(props.get("destroyIDI").toString()); 
      int destroyIDISalvo = Integer.parseInt(props.get("destroyIDISalvo").toString()); 
      int neutralizeIDI = Integer.parseInt(props.get("neutralizeIDI").toString()); 
      int neutralizeIDISalvo = 
Integer.parseInt(props.get("neutralizeIDISalvo").toString()); 
      int suppressIDI = Integer.parseInt(props.get("suppressIDI").toString()); 
      int suppressIDISalvo = Integer.parseInt(props.get("suppressIDISalvo").toString()); 
 
      int destroyAPC = Integer.parseInt(props.get("destroyAPC").toString()); 
      int destroyAPCSalvo = Integer.parseInt(props.get("destroyAPCSalvo").toString()); 
      int neutralizeAPC = Integer.parseInt(props.get("neutralizeAPC").toString()); 
      int neutralizeAPCSalvo = 
Integer.parseInt(props.get("neutralizeAPCSalvo").toString()); 
      int suppressAPC = Integer.parseInt(props.get("suppressAPC").toString()); 
      int suppressAPCSalvo = Integer.parseInt(props.get("suppressAPCSalvo").toString()); 
 
      int destroyLSV = Integer.parseInt(props.get("destroyLSV").toString()); 
      int destroyLSVSalvo = Integer.parseInt(props.get("destroyLSVSalvo").toString()); 
      int neutralizeLSV = Integer.parseInt(props.get("neutralizeLSV").toString()); 
      int neutralizeLSVSalvo = 
Integer.parseInt(props.get("neutralizeLSVSalvo").toString()); 
      int suppressLSV = Integer.parseInt(props.get("suppressLSV").toString()); 
      int suppressLSVSalvo = Integer.parseInt(props.get("suppressLSVSalvo").toString()); 
 
      double percentDestroy = Double.parseDouble(props.get("percentDestroy").toString()); 
      double percentNeutralize = 
Double.parseDouble(props.get("percentNeutralize").toString()); 
      double percentSuppress = 
Double.parseDouble(props.get("percentSuppress").toString()); 
 
      // load BattleFieldData and shooters, instantiate the server 
      BattleFieldData  battleFieldData = new BattleFieldData(percentArmor,destroyArmor, 
        destroyArmorSalvo,neutralizeArmor,neutralizeArmorSalvo,suppressArmor, 
        
suppressArmorSalvo,percentInfantryInOpen,destroyIIO,destroyIIOSalvo,neutralizeIIO, 
        neutralizeIIOSalvo,suppressIIO,suppressIIOSalvo,percentInfantryDugIn,destroyIDI, 
        destroyIDISalvo,neutralizeIDI,neutralizeIDISalvo,suppressIDI,suppressIDISalvo, 
        percentArmoredPC,destroyAPC,destroyAPCSalvo,neutralizeAPC,neutralizeAPCSalvo, 
        suppressAPC,suppressAPCSalvo,percentLightSkinVehicle,destroyLSV,destroyLSVSalvo, 
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        neutralizeLSV,neutralizeLSVSalvo,suppressLSV,suppressLSVSalvo,percentDestroy, 
        percentNeutralize,percentSuppress,fleeProbability, 
        RandomStream.STREAM[fleeStream],collateralDamageRadius,collateralDamagePercent); 
 
      Vector theShooters = new Vector(); 
      for(int i=0;i<numberShooters;i++){ 
         theShooters.add(aShooter[i]); 
      } 
 
      double[] theWeights = new double[5]; 
      theWeights[0] = Double.parseDouble(props.get("range").toString()); 
      theWeights[1] = Double.parseDouble(props.get("thePER").toString()); 
      theWeights[2] = Double.parseDouble(props.get("numberRounds").toString()); 
      theWeights[3] = Double.parseDouble(props.get("FieldArtillery").toString()); 
      theWeights[4] = Double.parseDouble(props.get("NSFS").toString()); 
 
      TgtServer2 server = new TgtServer2(theShooters,box,battleFieldData,theWeights); 
 
    SimpleStats fireMissionQueueTimeStat = 
      new SimpleStats("fireMissionQueueTime",SamplingType.TALLY); 
    SimpleStats totalFireMissionTimeStat = 
      new SimpleStats("totalFireMissionTime",SamplingType.TALLY); 
    SimpleStats tgtsInQueueStat = 
      new SimpleStats("tgtsInQueue",SamplingType.TIME_VARYING); 
    SimpleStats nasStat = 
      new SimpleStats("numberAvailableShooters",SamplingType.TIME_VARYING); 
    SimpleStats numberRepeatMissionsStat = 
      new SimpleStats("numberMissionRepeats",SamplingType.TIME_VARYING); 
    SimpleStats numberMissionsFiredStat = 
      new SimpleStats("numberMissionsFired",SamplingType.TIME_VARYING); 
    SimpleStats numberUnsuccessfulMissionsStat = 
      new SimpleStats("numberUnsuccessfulMissions",SamplingType.TIME_VARYING); 
    SimpleStats numberSuccessfulMissionsStat = 
      new SimpleStats("numberSuccessfulMissions",SamplingType.TIME_VARYING); 
    SimpleStats numberMissionsRejectedStat = 
      new SimpleStats("numberMissionsRejected",SamplingType.TIME_VARYING); 
 
    server.addPropertyChangeListener(fireMissionQueueTimeStat); 
    server.addPropertyChangeListener(totalFireMissionTimeStat); 
    server.addPropertyChangeListener(tgtsInQueueStat); 
    server.addPropertyChangeListener(nasStat); 
      server.addPropertyChangeListener(numberRepeatMissionsStat); 
    server.addPropertyChangeListener(numberMissionsFiredStat); 
    server.addPropertyChangeListener(numberUnsuccessfulMissionsStat); 
    server.addPropertyChangeListener(numberSuccessfulMissionsStat); 
    server.addPropertyChangeListener(numberMissionsRejectedStat); 
 
      arrival.addSimEventListener(server); 
      Schedule.stopOnEvent(stopEvent,stopEventCount); 
      Schedule.setVerbose(false); 
// FMT = Avg FM time 
// NAS = Number available shooters 
// PF = Percentage of missions fired 
// TPS = Total percent of missions successful 
// PS = Of missions fired, the percent of missions successful 
// CD = Number of rds with collateral damage 
// CA = percentage of area covered 
// COA = the coa designator 
      System.out.println(" FMT\t NAS\t PF\t TPS\t PS\t CD\t CA\t COA"); 
      for (int i=0;i<NUMREPLICATIONS;i++){ 
         Schedule.reset(); 
         fireMissionQueueTimeStat.reset(); 
         totalFireMissionTimeStat.reset(); 
         tgtsInQueueStat.reset(); 
         nasStat.reset(); 
         numberRepeatMissionsStat.reset(); 
         numberMissionsFiredStat.reset(); 
         numberUnsuccessfulMissionsStat.reset(); 
         numberSuccessfulMissionsStat.reset(); 
         numberMissionsRejectedStat.reset(); 
       Schedule.reset(); 
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       Schedule.startSimulation(); 
         double fmt = totalFireMissionTimeStat.getMean(); 
         double nas = nasStat.getMean(); 
         double pf = (double)(arrival.getNumberArrivals()- 
           numberMissionsRejectedStat.getCount())/arrival.getNumberArrivals(); 
         double tps = (double)numberSuccessfulMissionsStat.getCount()/ 
           (numberMissionsFiredStat.getCount()+numberMissionsRejectedStat.getCount()); 
         double ps = (double)numberSuccessfulMissionsStat.getCount()/ 
           numberMissionsFiredStat.getCount(); 
         int cd = server.getNumberRoundsCausingCollateralDamage(); 
         System.out.println(deci.format(fmt) + "\t" + deci.format(nas) + "\t" + 
           deci.format(pf) + "\t" + deci.format(tps) + "\t" + deci.format(ps) + "\t  " + 
           cd + "\t" + deci.format(ca) + "\t   " + theCOA); 
      } 
   } 
 
} 

 

2. FSSTGetCA.java 

/** 
 * Juan K. Ulloa <BR> 
 * Thesis: FSST 
 * January 19, 2001 
 * 
 * <P> 
 * 
**/ 
 
package fsst; 
import simkit.*; 
import simkit.data.*; 
import simkit.smd.*; 
import java.util.*; 
import java.io.*; 
import java.text.DecimalFormat; 
 
public class FSSTGetCA{ 
 
// main method 
   public static void main(String[] args){ 
      DecimalFormat deci = new DecimalFormat(" 0.0000;-0.0000"); 
    Properties props = new Properties(); 
       try { 
     props.load(new FileInputStream(args[0])); 
       } 
       catch (FileNotFoundException e) {System.err.println(e);} 
       catch (IOException e) {System.err.println(e);} 
 
         // get COA data 
    String theCOA = props.get("COA").toString(); 
 
         // get AO data 
    double xLowerLeft = Double.parseDouble(props.get("xLowerLeft").toString()); 
    double yLowerLeft = Double.parseDouble(props.get("yLowerLeft").toString()); 
    double xUpperRight = Double.parseDouble(props.get("xUpperRight").toString()); 
    double yUpperRight= Double.parseDouble(props.get("yUpperRight").toString()); 
    String xDist = props.get("xDist").toString(); 
    double xDistA = Double.parseDouble(props.get("xDistA").toString()); 
 double xDistB = Double.parseDouble(props.get("xDistB").toString()); 
// String yDist = props.get("yDist").toString(); 
//    double yDistMean = Double.parseDouble(props.get("yDistMean").toString()); 
    String yDist = props.get("yDist1").toString(); 
    double yDistA = Double.parseDouble(props.get("yDistA").toString()); 
    double yDistB = Double.parseDouble(props.get("yDistB").toString()); 
 
         // instantiate AO 
      Coordinate lowerLeft = new Coordinate(xLowerLeft,yLowerLeft); 
      Coordinate upperRight = new Coordinate(xUpperRight,yUpperRight); 
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      Object[] xDistParameters = new Object[]{new Double(xDistA),new Double(xDistB)}; 
//      Object[] yDistParameters = new Object[]{new Double(yDistMean)}; 
      Object[] yDistParameters = new Object[]{new Double(yDistA), new Double(yDistB)}; 
      AO box = new AO(lowerLeft,upperRight,xDist,xDistParameters,yDist,yDistParameters); 
 
       // get the stop data 
    String stopEvent = props.get("stopEvent").toString(); 
    int stopEventCount = Integer.parseInt(props.get("stopEventCount").toString()); 
 
       // get the ArrivalProcess data 
    String interarrivalDistribution = props.get("arrivalDistribution").toString(); 
    double meanInterarrivalTime = 
      Double.parseDouble(props.get("meanInterarrival").toString()); 
    int arrivalStream = Integer.parseInt(props.get("arrivalStream").toString()); 
 
       // instantiate the arrivalProcess 
    TgtArrivalProcess arrival = new TgtArrivalProcess(interarrivalDistribution, 
      new Object[] {new 
Double(meanInterarrivalTime)},RandomStream.STREAM[arrivalStream]); 
 
       // get the Shooter data 
      int numberShooters = Integer.parseInt(props.get("numberShooters").toString()); 
    double meanProjectileVelocity = 
        Double.parseDouble(props.get("meanProjectileVelocity").toString()); 
      String[] platformType = new String[numberShooters]; 
      String[] acquireServiceDistribution = new String[numberShooters]; 
      double[] meanAcquireInterservice = new double[numberShooters]; 
      double[] sigmaAcquire = new double[numberShooters]; 
      String[] firingServiceDistribution = new String[numberShooters]; 
      double[] meanFiringInterservice = new double[numberShooters]; 
      double[] sigmaFiring = new double[numberShooters]; 
      double[] maxRateOfFire = new double[numberShooters]; 
      double[] thePER = new double[numberShooters]; 
      double[] thePED = new double[numberShooters]; 
      double[] shooterXCoord = new double[numberShooters]; 
      double[] shooterYCoord = new double[numberShooters]; 
      int[] acquireServerStream = new int[numberShooters]; 
      int[] firingServerStream = new int[numberShooters]; 
      int[] numberRounds = new int[numberShooters]; 
      int[] numberGuns = new int[numberShooters]; 
      int[] shooterRange = new int[numberShooters]; 
      int[] burstRadius = new int[numberShooters]; 
      Shooter[] aShooter = new Shooter[numberShooters]; 
 
      for(int i=0;i<numberShooters;i++){ 
         platformType[i] = props.get("platformType"+(i+1)).toString(); 
       acquireServiceDistribution[i] = 
           props.get("acquireServiceDistribution"+(i+1)).toString(); 
       meanAcquireInterservice[i] = 
           Double.parseDouble(props.get("meanAcquireInterservice"+(i+1)).toString()); 
       sigmaAcquire[i] = Double.parseDouble(props.get("sigmaAcquire"+(i+1)).toString()); 
       firingServiceDistribution[i] = 
           props.get("firingServiceDistribution"+(i+1)).toString(); 
       meanFiringInterservice[i] = 
           Double.parseDouble(props.get("meanFiringInterservice"+(i+1)).toString()); 
       sigmaFiring[i] = Double.parseDouble(props.get("sigmaFiring"+(i+1)).toString()); 
         maxRateOfFire[i] = 
           Double.parseDouble(props.get("maxRateOfFire"+(i+1)).toString()); 
       thePER[i] = Double.parseDouble(props.get("thePER"+(i+1)).toString()); 
         thePED[i] = Double.parseDouble(props.get("thePED"+(i+1)).toString()); 
         shooterXCoord[i] = 
Double.parseDouble(props.get("shooterXCoord"+(i+1)).toString()); 
         shooterYCoord[i] = 
Double.parseDouble(props.get("shooterYCoord"+(i+1)).toString()); 
       acquireServerStream[i] = 
           Integer.parseInt(props.get("acquireServerStream"+(i+1)).toString()); 
       firingServerStream[i] = 
           Integer.parseInt(props.get("firingServerStream"+(i+1)).toString()); 
       numberRounds[i] = Integer.parseInt(props.get("numberRounds"+(i+1)).toString()); 
       numberGuns[i] = Integer.parseInt(props.get("numberGuns"+(i+1)).toString()); 
         shooterRange[i] = Integer.parseInt(props.get("shooterRange"+(i+1)).toString()); 
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         burstRadius[i] = Integer.parseInt(props.get("burstRadius"+(i+1)).toString()); 
            // instantiate the shooters 
         aShooter[i] = new Shooter(new Coordinate(shooterXCoord[i],shooterYCoord[i]), 
           shooterRange[i],thePER[i],thePED[i],acquireServiceDistribution[i], 
           new Object[] {new Double(meanAcquireInterservice[i]), 
           new Double(sigmaAcquire[i])},firingServiceDistribution[i],new Object[] 
           {new Double(meanFiringInterservice[i]),new Double(sigmaFiring[i])}, 
           maxRateOfFire[i],RandomStream.STREAM[firingServerStream[i]], 
           RandomStream.STREAM[acquireServerStream[i]],numberRounds[i], 
           burstRadius[i],meanProjectileVelocity, platformType[i],numberGuns[i]); 
      } 
 
         // instantiate the BattleFieldData 
      double fleeProbability = 
Double.parseDouble(props.get("fleeProbability").toString()); 
      int fleeStream = Integer.parseInt(props.get("fleeStream").toString()); 
      double collateralDamageRadius = 
        Double.parseDouble(props.get("collateralDamageRadius").toString()); 
      double collateralDamagePercent = 
        Double.parseDouble(props.get("collateralDamagePercent").toString()); 
      double percentArmor = 
        Double.parseDouble(props.get("percentArmor").toString()); 
      double percentInfantryInOpen = 
        Double.parseDouble(props.get("percentInfantryInOpen").toString()); 
      double percentInfantryDugIn = 
        Double.parseDouble(props.get("percentInfantryDugIn").toString()); 
      double percentArmoredPC = 
        Double.parseDouble(props.get("percentArmoredPC").toString()); 
      double percentLightSkinVehicle = 
        Double.parseDouble(props.get("percentLightSkinVehicle").toString()); 
 
      int destroyArmor = Integer.parseInt(props.get("destroyArmor").toString()); 
      int destroyArmorSalvo = 
Integer.parseInt(props.get("destroyArmorSalvo").toString()); 
      int neutralizeArmor = Integer.parseInt(props.get("neutralizeArmor").toString()); 
      int neutralizeArmorSalvo = 
Integer.parseInt(props.get("neutralizeArmorSalvo").toString()); 
      int suppressArmor = Integer.parseInt(props.get("suppressArmor").toString()); 
      int suppressArmorSalvo = 
Integer.parseInt(props.get("suppressArmorSalvo").toString()); 
 
      int destroyIIO = Integer.parseInt(props.get("destroyIIO").toString()); 
      int destroyIIOSalvo = Integer.parseInt(props.get("destroyIIOSalvo").toString()); 
      int neutralizeIIO = Integer.parseInt(props.get("neutralizeIIO").toString()); 
      int neutralizeIIOSalvo = 
Integer.parseInt(props.get("neutralizeIIOSalvo").toString()); 
      int suppressIIO = Integer.parseInt(props.get("suppressIIO").toString()); 
      int suppressIIOSalvo = Integer.parseInt(props.get("suppressIIOSalvo").toString()); 
 
      int destroyIDI = Integer.parseInt(props.get("destroyIDI").toString()); 
      int destroyIDISalvo = Integer.parseInt(props.get("destroyIDISalvo").toString()); 
      int neutralizeIDI = Integer.parseInt(props.get("neutralizeIDI").toString()); 
      int neutralizeIDISalvo = 
Integer.parseInt(props.get("neutralizeIDISalvo").toString()); 
      int suppressIDI = Integer.parseInt(props.get("suppressIDI").toString()); 
      int suppressIDISalvo = Integer.parseInt(props.get("suppressIDISalvo").toString()); 
 
      int destroyAPC = Integer.parseInt(props.get("destroyAPC").toString()); 
      int destroyAPCSalvo = Integer.parseInt(props.get("destroyAPCSalvo").toString()); 
      int neutralizeAPC = Integer.parseInt(props.get("neutralizeAPC").toString()); 
      int neutralizeAPCSalvo = 
Integer.parseInt(props.get("neutralizeAPCSalvo").toString()); 
      int suppressAPC = Integer.parseInt(props.get("suppressAPC").toString()); 
      int suppressAPCSalvo = Integer.parseInt(props.get("suppressAPCSalvo").toString()); 
 
      int destroyLSV = Integer.parseInt(props.get("destroyLSV").toString()); 
      int destroyLSVSalvo = Integer.parseInt(props.get("destroyLSVSalvo").toString()); 
      int neutralizeLSV = Integer.parseInt(props.get("neutralizeLSV").toString()); 
      int neutralizeLSVSalvo = 
Integer.parseInt(props.get("neutralizeLSVSalvo").toString()); 
      int suppressLSV = Integer.parseInt(props.get("suppressLSV").toString()); 



124 

      int suppressLSVSalvo = Integer.parseInt(props.get("suppressLSVSalvo").toString()); 
 
      double percentDestroy = Double.parseDouble(props.get("percentDestroy").toString()); 
      double percentNeutralize = 
Double.parseDouble(props.get("percentNeutralize").toString()); 
      double percentSuppress = 
Double.parseDouble(props.get("percentSuppress").toString()); 
 
      // load BattleFieldData and shooters, instantiate the server 
      BattleFieldData  battleFieldData = new BattleFieldData(percentArmor,destroyArmor, 
        destroyArmorSalvo,neutralizeArmor,neutralizeArmorSalvo,suppressArmor, 
        
suppressArmorSalvo,percentInfantryInOpen,destroyIIO,destroyIIOSalvo,neutralizeIIO, 
        neutralizeIIOSalvo,suppressIIO,suppressIIOSalvo,percentInfantryDugIn,destroyIDI, 
        destroyIDISalvo,neutralizeIDI,neutralizeIDISalvo,suppressIDI,suppressIDISalvo, 
        percentArmoredPC,destroyAPC,destroyAPCSalvo,neutralizeAPC,neutralizeAPCSalvo, 
        suppressAPC,suppressAPCSalvo,percentLightSkinVehicle,destroyLSV,destroyLSVSalvo, 
        neutralizeLSV,neutralizeLSVSalvo,suppressLSV,suppressLSVSalvo,percentDestroy, 
        percentNeutralize,percentSuppress,fleeProbability, 
        RandomStream.STREAM[fleeStream],collateralDamageRadius,collateralDamagePercent); 
 
      Vector theShooters = new Vector(); 
      for(int i=0;i<numberShooters;i++){ 
         theShooters.add(aShooter[i]); 
      } 
 
      double[] theWeights = new double[5]; 
      theWeights[0] = Double.parseDouble(props.get("range").toString()); 
      theWeights[1] = Double.parseDouble(props.get("thePER").toString()); 
      theWeights[2] = Double.parseDouble(props.get("numberRounds").toString()); 
      theWeights[3] = Double.parseDouble(props.get("FieldArtillery").toString()); 
      theWeights[4] = Double.parseDouble(props.get("NSFS").toString()); 
 
      TgtServer2 server = new TgtServer2(theShooters,box,battleFieldData,theWeights); 
 
    SimpleStats numberMissionsFiredStat = 
      new SimpleStats("numberMissionsFired",SamplingType.TIME_VARYING); 
    SimpleStats numberMissionsRejectedStat = 
      new SimpleStats("numberMissionsRejected",SamplingType.TIME_VARYING); 
 
    server.addPropertyChangeListener(numberMissionsFiredStat); 
    server.addPropertyChangeListener(numberMissionsRejectedStat); 
 
      arrival.addSimEventListener(server); 
      Schedule.stopOnEvent(stopEvent,stopEventCount); 
      Schedule.setVerbose(false); 
// theCA = percentage of area covered 
      Schedule.reset(); 
      numberMissionsFiredStat.reset(); 
      numberMissionsRejectedStat.reset(); 
    Schedule.reset(); 
      Schedule.startSimulation(); 
      double theCA = (double)numberMissionsFiredStat.getCount()/ 
        (numberMissionsFiredStat.getCount()+numberMissionsRejectedStat.getCount()); 
      System.out.println("The COA = " + theCOA + "\nThe CA = " + deci.format(theCA)); 
 
      for(int i=0;i<numberShooters;i++){ 
         System.out.println(aShooter[i].toString()); 
      } 
   } 
 
} 
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C. PROPERTIES FILE EXAMPLES 

1. IBCT: Army with Reinforcing NSFS 

# Fire Support Simulation Tool 
# 12 January 2001 
# 
# File: fsst1.properties 
# Properties file for Multiple Server Queueing Model with Reneging 
# 
 
# The COA Designator 
 
COA = 1D 
theCA = 1.0 
 
# The AO properties 
xLowerLeft = 0.0 
yLowerLeft = 0.0 
xUpperRight = 24000.0 
yUpperRight = 70000.0 
xDist = Uniform 
xDistA = 0.0 
xDistB = 24000.0 
yDist = Exponential 
yDistMean = 50000 
yDist1 = Uniform 
yDistA = 0.0 
yDistB = 70000.0 
 
 
# ArrivalProcess properties 
arrivalDistribution = Exponential 
meanInterarrival = 2.5 
arrivalStream = 1 
 
# BattleFieldData 
fleeProbability = 0.9 
fleeStream = 2 
collateralDamageRadius = 400 
collateralDamagePercent = 0.01 
 
   # Probability of Target Type being: 
percentArmor = 0.4 
percentInfantryInOpen = 0.1 
percentInfantryDugIn = 0.0 
percentArmoredPC = 0.3 
percentLightSkinVehicle = 0.2 
 
   # Number of Rounds within Burst Radius of Target to Destroy: 
destroyArmor = 18 
destroyIIO = 3 
destroyIDI = 6 
destroyAPC = 12 
destroyLSV = 9 
 
   # Number of Rounds within Burst Radius of Target to Neutralize: 
neutralizeArmor = 12 
neutralizeIIO = 2 
neutralizeIDI = 4 
neutralizeAPC = 9 
neutralizeLSV = 6 
 
   # Number of Rounds within 2 * (Burst Radius) of Target to Suppress: 
suppressArmor = 1 
suppressIIO = 1 
suppressIDI = 1 
suppressAPC = 1 
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suppressLSV = 1 
 
   # Number of rounds to fire in a salvo against specific targets: 
destroyArmorSalvo = 36 
neutralizeArmorSalvo = 24 
suppressArmorSalvo = 3 
 
destroyIIOSalvo = 6 
neutralizeIIOSalvo = 3 
suppressIIOSalvo = 3 
 
destroyIDISalvo = 24 
neutralizeIDISalvo = 9 
suppressIDISalvo = 3 
 
destroyAPCSalvo = 24 
neutralizeAPCSalvo = 18 
suppressAPCSalvo = 3 
 
destroyLSVSalvo = 18 
neutralizeLSVSalvo = 12 
suppressLSVSalvo = 3 
 
   # Probability of mission being: 
percentDestroy = 0.3 
percentNeutralize = 0.5 
percentSuppress = 0.2 
 
# Shooter properties 
 # projo velocity in x direction in m/min ( (mvv*60)/sqrt(2) ) 
meanProjectileVelocity = 70000 
numberShooters = 6 
 
# Shooter1 properties (Paladin Battery) 
platformType1 = FieldArtillery 
acquireServiceDistribution1 = Normal 
meanAcquireInterservice1 = 4.0 
sigmaAcquire1 = 0.75 
firingServiceDistribution1 = Normal 
meanFiringInterservice1  = 1.0 
sigmaFiring1 = 0.2 
 # in rounds per minute 
maxRateOfFire1 = 8 
thePER1 = 35 
thePED1 = 2 
shooterXCoord1 = 6000.0 
shooterYCoord1 = 30000.0 
acquireServerStream1 = 3 
firingServerStream1 = 4 
numberRounds1 = 2520 
shooterRange1 = 30000 
burstRadius1 = 50 
numberGuns1 = 6 
 
# Shooter2 properties (Paladin Battery) 
platformType2 = FieldArtillery 
acquireServiceDistribution2 = Normal 
meanAcquireInterservice2 = 4.0 
sigmaAcquire2 = 0.75 
firingServiceDistribution2 = Normal 
meanFiringInterservice2  = 1.0 
sigmaFiring2 = 0.2 
 # in rounds per minute 
maxRateOfFire2 = 8 
thePER2 = 35 
thePED2 = 2 
shooterXCoord2 = 12000.0 
shooterYCoord2 = 30000.0 
acquireServerStream2 = 5 
firingServerStream2 = 6 
numberRounds2 = 2520 
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shooterRange2 = 30000 
burstRadius2 = 50 
numberGuns2 = 6 
 
# Shooter3 properties (Paladin Battery) 
platformType3 = FieldArtillery 
acquireServiceDistribution3 = Normal 
meanAcquireInterservice3 = 4.0 
sigmaAcquire3 = 0.75 
firingServiceDistribution3 = Normal 
meanFiringInterservice3  = 1.0 
sigmaFiring3 = 0.2 
 # in rounds per minute 
maxRateOfFire3 = 8 
thePER3 = 35 
thePED3 = 2 
shooterXCoord3 = 18000.0 
shooterYCoord3 = 30000.0 
acquireServerStream3 = 7 
firingServerStream3 = 8 
numberRounds3 = 2520 
shooterRange3 = 30000 
burstRadius3 = 50 
numberGuns3 = 6 
 
# Shooter4 properties 
platformType4 = NSFS 
acquireServiceDistribution4 = Normal 
meanAcquireInterservice4 = 5.0 
sigmaAcquire4 = 1.0 
firingServiceDistribution4 = Normal 
meanFiringInterservice4  = 0.5 
sigmaFiring4 = 0.1 
   # in rounds per minute 
maxRateOfFire4 = 24 
thePER4 = 100 
thePED4 = 2 
shooterXCoord4 = 6000.0 
shooterYCoord4 = -40000.0 
acquireServerStream4 = 9 
firingServerStream4 = 0 
numberRounds4 = 2400 
shooterRange4 = 112000 
burstRadius4 = 75 
numberGuns4 = 2 
 
# Shooter5 properties 
platformType5 = NSFS 
acquireServiceDistribution5 = Normal 
meanAcquireInterservice5 = 5.0 
sigmaAcquire5 = 1.0 
firingServiceDistribution5 = Normal 
meanFiringInterservice5  = 0.5 
sigmaFiring5 = 0.1 
   # in rounds per minute 
maxRateOfFire5 = 24 
thePER5 = 100 
thePED5 = 2 
shooterXCoord5 = 12000.0 
shooterYCoord5 = -40000.0 
acquireServerStream5 = 1 
firingServerStream5 = 2 
numberRounds5 = 2400 
shooterRange5 = 112000 
burstRadius5 = 75 
numberGuns5 = 2 
 
# Shooter6 properties 
platformType6 = NSFS 
acquireServiceDistribution6 = Normal 
meanAcquireInterservice6 = 5.0 



128 

sigmaAcquire6 = 1.0 
firingServiceDistribution6 = Normal 
meanFiringInterservice6  = 0.5 
sigmaFiring6 = 0.1 
   # in rounds per minute 
maxRateOfFire6 = 24 
thePER6 = 100 
thePED6 = 2 
shooterXCoord6 = 18000.0 
shooterYCoord6 = -40000.0 
acquireServerStream6 = 4 
firingServerStream6 = 5 
numberRounds6 = 2400 
shooterRange6 = 112000 
burstRadius6 = 75 
numberGuns6 = 2 
 
# the Weights 
range = 0.125 
thePER = 0.125 
numberRounds = .5 
FieldArtillery = 0.25 
NSFS = 0.00 
 
# Run execute properties 
stopEvent = TargetArrival 
stopEventCount = 425  

 
2. FCS: Army with Reinforcing NSFS 

# Fire Support Simulation Tool 
# 12 January 2001 
# 
# File: fsst1.properties 
# Properties file for Multiple Server Queueing Model with Reneging 
# 
 
# The COA Designator 
 
COA = 2D 
theCA = 1.0 
 
# The AO properties 
xLowerLeft = 0.0 
yLowerLeft = 0.0 
xUpperRight = 50000.0 
yUpperRight = 120000.0 
xDist = Uniform 
xDistA = 0.0 
xDistB = 50000.0 
yDist = Exponential 
yDistMean = 80000 
yDist1 = Uniform 
yDistA = 0.0 
yDistB = 120000.0 
 
 
# ArrivalProcess properties 
arrivalDistribution = Exponential 
meanInterarrival = 2.5 
arrivalStream = 1 
 
# BattleFieldData 
fleeProbability = 0.9 
fleeStream = 2 
collateralDamageRadius = 400 
collateralDamagePercent = 0.01 
 
# Probability of Target Type being: 
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percentArmor = 0.4 
percentInfantryInOpen = 0.1 
percentInfantryDugIn = 0.0 
percentArmoredPC = 0.3 
percentLightSkinVehicle = 0.2 
 
   # Number of Rounds within Burst Radius of Target to Destroy: 
destroyArmor = 18 
destroyIIO = 3 
destroyIDI = 6 
destroyAPC = 12 
destroyLSV = 9 
 
   # Number of Rounds within Burst Radius of Target to Neutralize: 
neutralizeArmor = 12 
neutralizeIIO = 2 
neutralizeIDI = 4 
neutralizeAPC = 9 
neutralizeLSV = 6 
 
   # Number of Rounds within 2 * (Burst Radius) of Target to Suppress: 
suppressArmor = 1 
suppressIIO = 1 
suppressIDI = 1 
suppressAPC = 1 
suppressLSV = 1 
 
   # Number of rounds to fire in a salvo against specific targets: 
destroyArmorSalvo = 18 
neutralizeArmorSalvo = 12 
suppressArmorSalvo = 3 
 
destroyIIOSalvo = 3 
neutralizeIIOSalvo = 3 
suppressIIOSalvo = 3 
 
destroyIDISalvo = 6 
neutralizeIDISalvo = 4 
suppressIDISalvo = 3 
 
destroyAPCSalvo = 12 
neutralizeAPCSalvo = 9 
suppressAPCSalvo = 3 
 
destroyLSVSalvo = 9 
neutralizeLSVSalvo = 6 
suppressLSVSalvo = 3 
 
   # Probability of mission being: 
percentDestroy = 0.3 
percentNeutralize = 0.5 
percentSuppress = 0.2 
 
# Shooter properties 
 # projo velocity in x direction in m/min ( (mvv*60)/sqrt(2) ) 
meanProjectileVelocity = 100000 
numberShooters = 6 
 
# Shooter1 properties (Crusader Battery) 
platformType1 = FieldArtillery 
acquireServiceDistribution1 = Normal 
meanAcquireInterservice1 = 2.0 
sigmaAcquire1 = 0.25 
firingServiceDistribution1 = Normal 
meanFiringInterservice1  = 0.25 
sigmaFiring1 = 0.05 
 # in rounds per minute 
maxRateOfFire1 = 12 
thePER1 = 1 
thePED1 = 1 
shooterXCoord1 = 12500.0 
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shooterYCoord1 = 70000.0 
acquireServerStream1 = 3 
firingServerStream1 = 4 
numberRounds1 = 2520 
shooterRange1 = 45000 
burstRadius1 = 50 
numberGuns1 = 4 
 
# Shooter2 properties (Crusader Battery) 
platformType2 = FieldArtillery 
acquireServiceDistribution2 = Normal 
meanAcquireInterservice2 = 2.0 
sigmaAcquire2 = 0.25 
firingServiceDistribution2 = Normal 
meanFiringInterservice2  = 0.25 
sigmaFiring2 = 0.05 
 # in rounds per minute 
maxRateOfFire2 = 12 
thePER2 = 1 
thePED2 = 1 
shooterXCoord2 = 25000.0 
shooterYCoord2 = 70000.0 
acquireServerStream2 = 5 
firingServerStream2 = 6 
numberRounds2 = 2520 
shooterRange2 = 45000 
burstRadius2 = 50 
numberGuns2 = 4 
 
# Shooter3 properties (Crusader Battery) 
platformType3 = FieldArtillery 
acquireServiceDistribution3 = Normal 
meanAcquireInterservice3 = 2.0 
sigmaAcquire3 = 0.25 
firingServiceDistribution3 = Normal 
meanFiringInterservice3  = 0.25 
sigmaFiring3 = 0.05 
 # in rounds per minute 
maxRateOfFire3 = 12 
thePER3 = 1 
thePED3 = 1 
shooterXCoord3 = 37500.0 
shooterYCoord3 = 70000.0 
acquireServerStream3 = 7 
firingServerStream3 = 8 
numberRounds3 = 2520 
shooterRange3 = 45000 
burstRadius3 = 50 
numberGuns3 = 4 
 
# Shooter4 properties 
platformType4 = NSFS 
acquireServiceDistribution4 = Normal 
meanAcquireInterservice4 = 2.5 
sigmaAcquire4 = 0.5 
firingServiceDistribution4 = Normal 
meanFiringInterservice4  = 0.5 
sigmaFiring4 = 0.1 
   # in rounds per minute 
maxRateOfFire4 = 24 
thePER4 = 10 
thePED4 = 2 
shooterXCoord4 = 6000.0 
shooterYCoord4 = -40000.0 
acquireServerStream4 = 9 
firingServerStream4 = 0 
numberRounds4 = 2400 
shooterRange4 = 162000 
burstRadius4 = 75 
numberGuns4 = 2 
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# Shooter5 properties 
platformType5 = NSFS 
acquireServiceDistribution5 = Normal 
meanAcquireInterservice5 = 2.5 
sigmaAcquire5 = 0.5 
firingServiceDistribution5 = Normal 
meanFiringInterservice5  = 0.5 
sigmaFiring5 = 0.1 
   # in rounds per minute 
maxRateOfFire5 = 24 
thePER5 = 10 
thePED5 = 2 
shooterXCoord5 = 12000.0 
shooterYCoord5 = -40000.0 
acquireServerStream5 = 1 
firingServerStream5 = 2 
numberRounds5 = 2400 
shooterRange5 = 162000 
burstRadius5 = 75 
numberGuns5 = 2 
 
# Shooter6 properties 
platformType6 = NSFS 
acquireServiceDistribution6 = Normal 
meanAcquireInterservice6 = 2.5 
sigmaAcquire6 = 0.5 
firingServiceDistribution6 = Normal 
meanFiringInterservice6  = 0.5 
sigmaFiring6 = 0.1 
   # in rounds per minute 
maxRateOfFire6 = 24 
thePER6 = 10 
thePED6 = 2 
shooterXCoord6 = 18000.0 
shooterYCoord6 = -40000.0 
acquireServerStream6 = 4 
firingServerStream6 = 5 
numberRounds6 = 2400 
shooterRange6 = 162000 
burstRadius6 = 75 
numberGuns6 = 2 
 
# the Weights 
range = 0.125 
thePER = 0.125 
numberRounds = .5 
FieldArtillery = 0.25 
NSFS = 0.00 
 
# Run execute properties 
stopEvent = TargetArrival 
stopEventCount = 425 
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